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Process of irreversible nucleation in multilayer growth. I. Failure of the mean-field approach
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The formation of stable dimers on top of terraces during epitaxial growth is investigated in detail. In this
paper we focus on mean-field theory, the standard approach to study nucleation. Such theory is shown to be
unsuitable for the present problem, because it is equivalent to considering adatoms as independent diffusing
particles. This leads to an overestimate of the correct nucleation rate by af§otdrich has a direct physical
meaning: on average, a visited lattice site is visidédimes by a diffusing adatom. The dependence\obén
the size of the terrace and on the strength of step-edge barriers is derived from well-known results for random
walks. The spatial distribution of nucleation events is shown to be different from the mean-field prediction, for
the same physical reason. In the following paper we develop an exact treatment of the problem.
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[. INTRODUCTION ters ofj atoms ( clustersj=2). If only adatoms are mobile,
the spatial density; of j clusters varies in time according to
A crystal can be produced artificially with different tech- the relation[3] d;p;=U; _;—U;, whereU; is the net rate of
niques: we can pull it from the melt, grow it from a solution the processj(cluster)=(j+1 cluster).U; is the sum of a
or obtain it via deposition from a gas or vapor phase onto agrowth term” and a “decay term”: the growth term repre-

suitable substrate. One of the key mechanisms of the growtpeNts the aggregation of an atom intpciuster and it has the
process is the formation of supercritical nuclei, that is the©M o;Dpp;, wherep is the adatom density) the adatom

nucleation—via diffusion and aggregation—of crystalline diffusion constant, and; is an adimensional capture num-
clusters whose growth rate exceeds the decay rate ber; the decay term represents the thermal detachment of an

In this paper we devote our attention to epitaxial gromhff[OLnD/frgm a (tlA)E/ clustr;ar anq tlr: Ihetlts the ftorT
by atomic or molecular beani4]: particles travel ballisti- (4D/ap)p;+1€xp( T), wherea, is the lattice constan

cally towards the growing surface where they undergo a thel"émdAE is the energy difference between aluster (plus a

. e :
mally activated diffusion process. The siZe of the critical free adatorpand aj + 1 cluster. Ifi* =1 such term IS absent, .
because alj clusters are stable and the nucleation rate is

nucleus is typically a few units and its actual value depend%uRE: .Dp? (the subscript standing for “rate equations’

on several factors: the substrate and the type of adatoms The capture factorr; is defined through the flud; of
deposited determine the activation barriers for the diﬁeren&datoms attaching to Jthje cluster: ® =Dap, and itJ ac-
il I

atomistic processes, while the temperature and the flux des s for the different adatom densities surrounding islands
termine Wha_lt processes are rea!ly reIeva_nt on the time scal§ jifferent size. In a mean-fiellMF) approach such density
of.the .ex.perlmer}t. nge we chS|der the simplest case: nucles tgken as a constant,= 2d [4] and the nucleation raeer
ation is |rreverS|bIe.|(*=1), i.e., once two adatoms meet lattice site readssye=2dDp2.

they form a stable dimer. After nucleation, the stable nucleus o — .
grows by capturing other adatoms. Ey monitoring the adatom der.wsniyand thg total density

We start by explaining in general terms the role of nucle-f islandspror=ZX;=,p; one realizes the existence of a re-
ation in the different stages of epitaxial growth and by dis-gime characterized byror almost constant in time, prior to
cussing how rate equations and mean-field theory deal witthe coalescence regimi]. The average distandg, between
it. The focus of the rest of the paper will be on nucleation onislands can therefore be defineds=1/p1o7, d being the
top of terraces bound by descending stégften called sec-  dimensionality of the substrate: usuatly=2, but in the fol-
ond layer nucleation lowing we will considerd=1 as well.{ is called the dif-

In the submonolayer regime diffusion takes place on thdusion length and it also gives the typical linear distance
substrate: adatoms are deposited randomly and they diffuseaveled by an adatom before being incorporated in an island.
until they meet another wandering adatom or a growing clus- During the time 1F, necessary for the deposition of a
ter. monolayer, there is on average a nucleation event per«?@rea

Rate equation$2] are widely used to describe the pro- [6]. Therefore, according to mean-field theowyy:¢2/F
cesses of adatom capture and adatom detachment from clus-1, je., D?gg“:Nl with (see Appendix Al ;

~(F/D)¢3. So we obtain the resultp,~(D/F)”, with y

=tind=1 andy=¢ in d=2. This relation is wrong in one
*Present address: Istituto di Fisica Applicata “Nello Carrara,” dimension, but essentially correct in two dimensip@g]. In
Consiglio Nazionale delle Ricerche, Via Panciatichi 56/30, 50127Sec. IV A it will become clear that mean-field thediMFT)

Firenze, Italy. Email address: politi@ifac.cnr.it gives the correct result foy in d=2 because step-edge bar-
"Email address: castella@pil.phys.uniromadl.it riers at island edges play no role in the submonolayer re-
gime.
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If adatoms freshly attached to a growing nucleus are imsites and understand the physical origin of its failure. In the
mobile the resulting island is normally fractal, but if they can following paper[21] we compute exactly andP(x), pro-
diffuse along the step-edge the island gets compact. Compaeiding the correct expressions that must be used in place of
islands are therefore obtained at not too low temperatses the MF approximations.
that thermally activated edge diffusion actually ocgurs We have organized this paper as follows. The three rel-
whilst nucleation is irreversible at not too high temperaturesevant time scales for the nucleation process and the associ-
(so that a dimer is thermally stabldn some experimental ated regimes are introduced and discussed in the following
systems both conditions are fulfilled in a given temperaturesection. In Sec. Ill we explain how we can get rid of the
range: Pt111)/Pt in the range 350—430 8], Ag(100/Ag in  stochastic nature of the deposition procéSec. Il A) and
the interval 200—300 K9], and F€100/Fe between 300 and we introduce the quantities of interest in the paper, the spatial
500 K [10] are some examples. distribution of nucleation eventSec. Il B), and the nucle-

Once island coalescence has set off, most nucleatioation rate(Sec. Il C. In Sec. IV we show the equivalence of
events take place on top terraces. The obvious reason is thlt- theory with a model of noninteracting particles, both for
even for layer-by-layer growth a new atomic layer starts tothe nucleation ratéSec. IV A) and for the spatial distribution
form before the completion of the previous one and consetSec. IV B). The final section contains a critical summary of
quently the growing surface is made up of a certain numbethe results.
of exposed layers. Terraces can be classified asTtppvici- A short report of this work has been published in Ref.
nal (V), and bottom(B) terraces according to the type of [22].
steps surrounding them: in general only top terraces attain a

size large enough to have a considerable probability of Il. TIME SCALES
nucleating a new island. Since this probability grows ) ) ) )
abruptly from zero to one with increasing terrace $i8, it We consider a top terrace of fixed linear sizesubject to

is possible to introduce a critical nucleation length, [12]. a flux F of particles. Once on the terrace, each particle moves

In the presence of step-edge barrigt§], hindering inter- with a diffusion constanD until it meets another particle or
layer transport, such length differs for the three types of terit [6aves the terrace. At step edges an additional energy bar-
races:¢T rier, usually called Ehrlich-Schwoeb@ES) barrier[13], re-

1.c goes to zero with increasing barriers whilgh,. d the rat®’ of interl d the ES | h
and¢2 . remain finite in such limif12,14. Nucleations gen- uces the rat®" of interlayer transport and the engt

erally occur on top terraces because the size of the vicinal D

and bottom terraces hardly reaches the nucleation length. €ES:(__1)aO (1)
However, nucleation is a stochastic phenomenon and there- '

fore dimer formation may also occur on vicinal terraces ev-

ery now and then, while on bottom terraces it is an exceedM€asures the asymmetry betweerandD’. In the follow-
ingly rare event. These occasional “vicinal nucleations” areind the lattice constan, will be taken as unit lengthap

an important stabilizing mechanism of the surface, even if~ 1). ] ) _

their relative weight decreases as barriers incréaSeL6]. In genera_l, thr(_)ughout Fhe paper we will consider discrete

The mean-field approach to evaluate the nucleation ratgPace and time, i.e., particles moving on a lat{aesquare
for (reversible and irreversiblenucleation on top terraces lattice ind=2), at fixed time steps. However, we will some-
has been worked out by Tersoff, van der Gon, and Tromp ifimes use a continuum notation as well. The matching be-
Ref.[11] and since then their results have been widely usedveen discrete and continuum is straightforwardt,ifis a
to analyze experimental data and extract the values of stefgontinuous time and its discrete counterpatnumber of
edge barriers. The mean-field approximation can also b&me step§ thent.=t;At, whereAt=1/(2dD) is the time
used in “mesoscopic” models of growfi 7] for implement- ~ @n atom remains on each lattice site.
ing the rule for the spatial distributioR(x) of nucleation Let us now discuss the three time scales involved in the
events, via the relatio(x) < p?(X). problem[19].

Recently, several authof4¢8—20 have started to review (1) The traversal time4,) is the average time needed by
critically the MF approach. In Refq18,20 authors are @ diffusing particle to reach the terrace boundaries. In the
mainly interested in the validity of MFT for different values largeL limit
of the critical sizei*: this check has been done through
scaling analysis and kinetic Monte Carlo simulations. A
deeper investigation of the irreversible case=£1) is done where 8 is a numerical prefactor depending on the dimen-

in Ref.[19] in the limit of strong step-edge barriers, through gion  and the shape of the terrace. Its value is discussed
a quantitative approach based on the different time scalegfter Eq.(4).

involved in the nucleation process. (2) The residence timer{.¢) is the average time a particle

The inaccuracy of MF theory in dealing with the problem d h i< rel h — .
of second layer nucleation has therefore already been pointé?en s on the terrace. Itis related to the average demsity

out in the literature. In this work we analyze thoroughly the a@datoms via the relatiofi9] p=F 7.5, where the density
validity of the MF theory for irreversible second layer nucle- (and therefore its average valg¢ can be determine(see
ation, we rigorously prove its inadequacy both for the nucle-Appendix Al by solving the stationary diffusion equation in
ation ratew and the spatial distributio®(x) of nucleation the presence of a constant fl&x

7= BLID, 2
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DV2p+F=0. (3)  terrace, they meet—if they do—on the time scale of the tra-
versal timer,, . This fact is intuitively clear and it is proven
Boundary conditions depend on the strength of the ES barrign Ref. [21]. The probability that a third atom lands in the
at descending steps. If the equilibrium adatom density—dueneanwhile is,, / 74¢,, negligibly small. Irreversible nucle-
to thermal detachment from steps—is neglected, the boundition is therefore the result of two-adatoms processes only.
. ) p ) Depending on the relative size of,s with respect to the
ary condition forp is ‘9LP|step:g_ES|step' whered, is the  other two time scales, three different regimes may occur:

local derivative in the direction perpendicular to the step
(directed inward the terrageln a discrete picturéfor ex-
ample ind=1) if n=1 is a lattice site at the edge of the
terrace andh=0 is its fictitious neighbor outside the terrace,
we have p(1)—p(0)=p(0)/{gs, Ii.e., 0)={s/(1 ) )
+€Es)P(1)Ep<’EIP21)F-)( )=p(0)/tes p(0)={es/( Tir < Tdep< Tres infinite barriers[ regime(iii)]. (8)
The solution of Eq(3) (see Appendix Al gives the fo_l-

lowing result, valid both in one and two dimensions:
=(F/D)(BL+ atggL, wherea is another numerical factor
depending on the dimensiahand on the shape of the ter-
race. We can finally write

Tty = Tres< Tdep zero or weak barriergregime(i)], (6)

Tir < Tres< Tdep strong barriergregime(ii)], (7)

The difference between the three regimes is easily under-
stood. A nucleation may occur only if a new adatom is de-
posited before the previous one leaves the terrace,lf
<Tgep [regimes(i) and (ii)] this is a rare event. When it
happens, the second atom finds the first one with a spatial
distribution that differs in casg$) and(ii) (see Appendix B
If €es<L [regime(i)] when the adatom reaches the edge of
the terrace, it gets off. Steps act as absorbing boundaries and
the adatom density vanishes thepehas a parabolic shape
with a maximum in the middle of the terra¢eee Appendix
Al). If £z>L [regime(ii)] the adatom is pushed back from
the terrace edge several times before being able to descend.
Steps act agimperfec) reflecting walls andp is approxi-
mately uniform over the whole terrace. In regiriie) when
a new adatom is deposited it always finds the previous one
&ill on the terrace, they both have a flat distribution and they
will certainly meet.

Tros=(BL+ alzg)L/D. (4

In the absence of ES barrieréds=0) 7,.s andr, are equal.
From Eqgs.(A7), (A8), (A18), and (A50) we infer that ind
=1, B=1/12 anda=1/2. Ind=2, for a circular terrace of
radiusL, f=1/8 anda=1/2, while for a square terracg,
=32/7® anda=1/4.

In the discrete picturer,os is clearly equal to the total
number of sites ) visited by an atom during its diffu-
sional motion on the terrace. Since the adatom stays on
lattice site a time 1/(@D) we have 7,.s=Ng/(2dD).

Hence, the residence timg,¢, the average densigyand the
numberN,, of all sites visited by the adatom carry the same
piece of physical information, oncé and D are set. The
quantity N, should not be confused with the number of In the present and in the following pap@Ref. [21]) we
distinctsites (s Visited by an adatom: a given lattice site, are going to use a discrete formulation for particle dynamics,
visited k times, contributes for 1 tdys and fork to Ny, . both in space and in time. In this sectiam,indicates the
(3) The deposition time ;) is the average time be- whole set ofd integer numbers specifying the position of a
tween a deposition event and the next one. For a terrace glrticle on the terrace. A nucleation event is assumed to oc-
areaAd=LY, cur when two adatoms are on the same lattice site, rather
than on neighboring lattice sites: this definition avoids use-

IIl. GENERAL FORMALISM

1 1 less mathematical complications, but retains all the physics
Tdep"E 4~ FLO" (5 of the nucleation process.
Physically sensible values fd¥, L and D imply that 7, A. Reduction to two particles deposited simultaneously

<Tgep. This relation indeed id?/D<1/FLY ie., D/F
>1.972: we can now recall the diffusion lengfl23] intro-
duced in Sec. Ifp~(D/F)?” and measuring the “maximal”
size of a terracen the absenceof step-edge barriers. For
irreversible nucleation the exponent is equal to[23]

It is clear that the problem of dimer formation on a terrace
involves the study of the diffusion of two particles deposited
at different timesthe spatial and temporal distributions of
landing events play therefore a prominent role. The incoming
, . flux of particles is supposed to be spatially and temporally
1/2(d+1) =9 that we obtain tgg Con_d't'OﬁzD(dH)/(dﬂ) uniform [24]: a particle arrives on each lattice site with uni-
>L, ie, {p>L in d=1 and {p>L in d=2. Smooth  orm probability pY=1/L% and the interarrival timer be-

growth requires thatp,>1; furthermore. is at most of order  veen two deposition events decays exponentigsj,
{p if £gs=0, but for finite barriers it iSmuch smaller. We

conclude that the above conditions are fulfilled and that we Paed 7) =€XP(— 7/ Tgep)/ Tgep- 9
can safely suppose thaf, < 74gp.

This inequality has a consequence of primary importance: Let us now consider any “two-particle” quantit§, i.e.,
processes involving more than two adatoms at a time can bany quantity depending on the initial distributions of particle
fully neglected. Once two adatoms are simultaneously on th& and 2 and on their interarrival time
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Let pn(O)zph’:llLd be the initial uniform distribution
of an atom andp,(7) its dynamical evolution at time (in
the absencef other particles If particle 1 is deposited at
time zero and partiel 2 a time 7 later, we call
o{pP(7),p!?(0)} the resulting physical quantity? might
be, for example, the probability,,. that a deposited particle
nucleates a dimer before getting off the terrdsee Eq.
(19)]. Once{p{M(7),p{?(0)} is known, one should evalu-
ate its average ovet,

O=2, Paed 7)O{PR(7),P[V(0)}. (10

The crucial point is that ifD is linear in the initial distribu-
tionsp{*? of the two atomgas all quantities discussed in the
paper arg the above equation can be rewritten as

O=0{p;",p{?(0)} (11)
in such a way that the average oveis now included in an
effective initial distribution

peff= ;0 Paed IP(7). (12

We can make more explicit the physical content of the

PHYSICAL REVIEW E66, 031605 (2002

Tres s

e py. (14)

el
TdepT Tres

The physical content of Eq14) is readily understood. For
infinite barriers[regime (iii)] pﬁﬁ= pS=1/L% the first par-
ticle cannot escape from the terrace and its distribution is
still uniform and normalized when the second one lands. For
strong but finite barriergregime (ii)] pﬁﬁz(rres/rdep)pﬁ
=(Tres/ Tdep) (1/L%): most of the particles that arrive on the
terrace leave it before another particle lands, but the distri-
bution of the first particle remains practically uniform be-
cause many attempts are needed to overcome the ES barrier.
In the limit of zero or weak barriergregime (i)] pﬁ“

= (Tres! Taep) Py @ndpyy vanishes on the edges, reflecting the
presence of the absorbing boundaries.

B. The spatial distribution of nucleation events

In the preceding section we have explained how to trans-
form the original problem into the new problem of two at-
oms deposited at the same time, with normalized distribu-
tions p> (the firsh and py,, (the second We can now define
the probabilityR(n,t) that a nucleation event occurs on site
n at timet and introduce the following quantities:

P(n)zZ R(n,t), (15)

above reasoning, which is based on the linearity with respect

to the initial distribution of the two particles. Atom 2 is de-
posited with probabilityP 4. 7) a time 7 after atom 1, which
means that atom 2 has the probabilty.{ 7) to find atom 1

distributed according tp{*(7): on average—and it is now

W= P(n). (16)

P(n) is the spatial distribution of nucleation events akid

that linearity comes into play—atom 2 finds atom 1 with thejs the probability that two atoms, both on the terrace at time

effective distribution given in Eq12).

In this way we have reduced the problem of evaluatihg
to the evaluation ofD for two particles deposited simulta-

zero, meet before leaving the terrace. It is useful to consider
the normalized spatial distribution P(N)(n)=P(n)/W as
well.

neously. Thus we can ignore the stochasticity of the deposi-

tion process and assume that atoms 1 and 2 drkde same
time but the actual initial distribution for atom @he uni-
form distribution is replaced bype".

The next task is then the determinationpgf' . The func-
tion p,(7) (discussed in Appendix A2s the distribution of
the first adatom at time, i.e., the solution of the diffusion
equation for a single particle with initial condition

, 1
Pn(7=0)=p, KL (13

The sum ofp,(7) over all timest is the solution of the
stationary diffusion equatio(3) (of its discretized version,
actually, see Appendix A1 whose normalized form will be
indicated withpﬁ (S standing for stationapy It has, in gen-
eral, a parabolic form, and in particular id=1, pﬁ

=[€esl +(L+1)n—n?]/[€ed-?+ %L(LJF 1)(L+2)].

C. The nucleation rate

The nucleation rate is defined as the number of nucle-
ation events per unit time on th&hole terrace of sizel,
irrespective of the spatial location of the meeting point. This
quantity is of great importance because it is related to the
probability of second layer nucleation. In a classical experi-
ment[26] a fraction of a monolayer is deposited on the sub-
strate and the size of islands is made as uniform as possible
through an annealing procedure. Starting from this template
a second dose of atoms is deposited and nucleation on top of
existing islands is monitoredo(L) enters in the interpreta-
tion of this experiment because the probabilfyt) that a
nucleation event has occurred on a terrace by tinseP(t)
=1—exp{—[tdre[L(7)]}. The rate w(L) is defined and
evaluated for a constant terrace sizein the experiment
instead,L grows in time and the time dependencelofs
“system-dependent.” Hence, the growth ldvw7) of the ter-
race size must be supplied beyowndL), and it depends on

In Appendix B it is shown that in all dimensions we can the specific morphology of the surface and the experimental

write

setup. In other words, the nucleation rate—on the one
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hand—has a very general and basic meaning, but—on thie terrace at time zergp> and p{?(0) are normalize
other hand—it can hardly be measured directly. This meanmeet before descending. Therefore it coincides Wittand
that, despite our results fes(L) being exact, the evaluation we finally obtain

of L(t) introduces some approximations in the interpretation

of experimental results, whose accuracy depends on the de- Tres

. . - _ppd
tail of the system considered. In addition, some secondary o=FL mw- (22)
effects, as steering and nonuniform barriers, may further P
complicate the problem. D. Noninteracting particles

We now connectw to P(n) andW. In Sec. Il we ex- We are considering a system such that once adatoms come

plained that only processes involving two adatoms are relgygether an immobile dimer is formed irreversibly: adatoms
evant for studying irreversible nucleation, becausge  siop diffusing and the dimer does not dissociate. It turns out
<Tgep- If we define the nucleation probability per atom, 1o pe of great help to consider also an artificial model, with
Pruc, We can write the nucleation rate as the number of atadatoms treated as independently diffusing particles: even if
oms landing on the terrace per unit tim'eL(d:l/Tdep) times  they meet on the same lattice site they go on diffusing and

the nucleation probability per atom, therefore they can cross each other several times before leav-
o ing the terrace. We consider all these meetings as “fictitious
0=FL Pnyc. (17 nucleations,” and define also for noninteracting particles the

quantities mentioned above: the nucleation g, the spa-
The quantityp,, is the probability that a deposited particle tial distribution Py,(n), and the total numbew,, of nucle-
nucleates a dimer before getting off the terrace and it can bation events, the subscript NI standing for “noninteracting.”
written as
IV. EQUIVALENCE OF MEAN-FIELD THEORY

~ - ) @) AND NONINTERACTING PARTICLES MODEL
Pruc= 2 Paed DPnud P(7),pP(0)},  (18) |
=0 A. The nucleation rate
PR We have introduced the nucleation rate in Sec. Il C and
where the dependence on the initial distributions of atoms 1, . . ; . o
and 2 has been made explicit. We stress that the dependenf(%%ta'rled E?H(ztz)' Wblsﬂt]he nt%cletatlon protbtablhty betv;eenth
on the initial distributions occursia the full diffusion pro- r\évodalon;sn nailntarre tion 03 temsrrzceﬁ blm? z:aro.d %r €
cess For example, for independent particles in one dimen- odel of honinteracting adatoms should be replaced by
sion, the explicit form ofp,, is Wy, the average number of meetings between the two inde-
’ nue pendent particles. Of courd#/y, can be larger than 1.
L = The simplest and less interesting case is the regjiimeof
P C{p(l)(f) p(2)(0)}: E E P m(t){p(l)(r) p‘z)(O)} infinite barriers. In such a cas@/ is trivially 1 and o
e n m=1{=0 " " " =FL9=1/r4,, i.€., any particle deposited on a terrace does
(19  form a dimer. In a sense, this limit is unphysical for mean-

field theory becaus@ and wye=2dDL%? diverge when

wherepp, m(t) is the solution of the diffusion equationtwo Y
dimensionswith the initial condition given by the product Em the other two regimegweak and strong barrierseq.
pM(7)p'?(0) (see Ref[21] for more details (22) becomes ’
Because of the linearity gf,,., we have
Tres —
- =FLI—W=FL%pW, 23
Pruc= pnuc{pﬁﬁ' 512)(0)}- (20) @ Tdep P ( )

The nucleation probability per atom can be thought as thevhere we have used the relationg,,= (FL%) ~* andF 7,eg
probability that atom 1 is still on the terrace when atom 2 is— ;" \we can repeat the same procedure for noninteracting
deposited, times the probability they meet before getting offyarticles and obtain
the terrace. This is exactly what emerges from €) once

expression(14) for the effective distributiorpﬁff is inserted, Tres

wpn=FLI =W, =FL2p Wy, . (24)

Tdep
~  Tres
Phuc=

e S.pP(0)}. 21
Tdep™ TresanC{pn Pr(O)} G It is possible to relat& and Wy, to single-particle quan-

tities, Ngis and N, (see Sec. )l They are the number of
The normalization factor opf" is the probability that distinct (Ngo and all (N sites visited by a single walker
atom 1 is still on the terrace when the next one shows up; fodiffusing on the terracg27]. Let us assume one of the two
infinite ES barriers £,¢s> 74¢p) SUch a probability is trivially  adatoms fixed on site. w(s) is the probability that the dif-
1, while for weak and strong barriersr{s<74cp) it is fusing adatom visits site before getting off the terrac®V is
Tres/ Taep- The remaining quantity on the right-hand side then the average value wf(s), W=3w(s)/L% The quan-
(Prud P5.p'?(0)}) is the probability that two atomboth on  tity Sw(s) is nothing but the total number of distinct sites
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FIG. 1. (8 Log-log plot of W (empty circley, Ngs/L? (full
circles, Wy, (empty squarés N, /L2 (full square$ versust g for
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Ngis Visited by the diffusing adatom, so th&¥=N/LC.
The same argument for noninteracting particles givg
:Na"/Ld.

The relations

(29)
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FIG. 2. Plot of the correction factowye/w and of N
=N, /Ny versuses/L, for a square terrace of size=20.

wn=FLI%Ny. (27)

Since Ny, is related to the residence time byes
=Ng,/(2dD), we can write

wn=2dFLIpD 7,0s=2dDLYp%= wye . (28)

In this way we have shown that for the nucleation Ithie
mean-field treatment is equivalent to considering particles as
noninteracting i.e., counting also meeting events following
the first one. For this reason the mean-field value is an over-
estimate of the correct nucleation rate. Furthermore we have
proven that

M = = (29

In Fig. 2, the comparison abyr/w, computed exactly in
the companion papg@1] with Ny /Ngis, evaluated numeri-
cally, shows clearly that Eq29) is valid with great accuracy.

The correction factorV depends on well-known proper-
ties of single particles performing a random walk. The nu-
meratorN, is just(see Sec. )t Ny =2dL(BL+ afgg). The
value of the denominatoNy is well known [28] in the
absence of step-edge barriers, being of otdar d=1 and
of order L%InL in d=2, and it is trivial in the limit of
infinite barriers, being exactly equal td. Hence ind=1

have been derived under the assumption that one atom ge obtain\'~ (L + afgg), for all £s.

immobile. In Fig. 1 we compare numerically the values of
single-particles quantities Ngis/L% Ny /LY  with  two-

In d=2 we have the limiting expression§~InL for
weak barriers and/~ € /L for strong ones. For intermedi-

particle quantities \V,Wy,). The former have been calcu- ate barriers it is possible to find a simple approximate ex-
lated via Monte Carlo simulations and the latter through thepression forNg,, and therefore an interpolation between the
numerical solution of the discrete diffusion equation for twotwo limits. The atom performs on average a numbky

atoms on a terrac@iscussed in detail in Reff21]): it comes

=165/ T Of traversals of the island. During a single tra-

out that relation25) are well satisfied, so that assuming oneversal each site has a probabilipy~ (1/InL) to be visited.
atom as immobile is perfectly reasonable for the evaluatiomfter all N,, traversals the probabilitp, that a generic site

of WandW,,.

If we insert the relation$25) into Eqgs.(23) and (24) we

obtain

w=FL%Ny, (26)

has been visited at least once is given by [d=(1
—py)Nr. Hence we can estimate the number of distinct vis-
ited sites as

Ngis= L2ps=L[1— (1~ py)Tres/ "], (30
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1000 ' , ' andp®(x,0)=p(x)] is equally legitimate and it is useful to
use a symmetrized form fqu(x,0):

s———= Monte Carlo simulation
+——e Approximate formula

1
100 ¢ p(x,0)= E[P(Xl)pU(XzH pY(x1)p(X2)]. (32

Notice that p(x) is also the solution of the equation
DV?2p(x)=—pY(x). Therefore,

NalllNdis

10 |

D 2 D 2 2
5 VP =5[p(x1)V2r(xa) +p(x2) Vip(x1)], (33)

1 10 100 1000 10000
ES 2 2_yp2, p2
whereV? acts onx; only andV<=V?+ V5. Hence,

FIG. 3. Log-log plot of Ny /Ngs versus€gg for d=2 andL 5 )
=20. VEP(x) =V p(x1)p(x2)], (34)

This expression assumes all traversals to be independenfe., the functiony(x)=P(x) — p(X1) p(X,) is harmonic. It is
which is clearly not strictly correct. However, it gives the easy to shoW29] that y(x) must be identically zero. Hence,
right values in the limits{gs=0 and{gs=c0 and for inter-

mediate barriers its accuracy can be tested numerically. In P(X)=p(Xq)p(Xs). (35)
Fig. 3 we have plotted the ratiN,,/Ngs as a function of

{es, for L=20. The picture shows a reasonable agreement
between the analytical estimate and the numerical simulaél,[i
tion.

If we setx;=X,=X, the left-hand side is just the nucle-
on probabilityPy,(x) at pointx between two noninteract-
ing adatoms, and the right-hand side is the mean-field pre-
S diction. Notice that we have not used the explicit form of
B. The spatial distribution pY(x). Hence, the proof holds foany initial spatial distri-

In the preceding section we have shown that MF theonypution pY(x), so that the equivalence between MF theory
overestimates the nucleation rate by the quantitpecause and the noninteracting particles model is true even if atoms
it counts all meetings between two noninteracting adatomsare not deposited uniformly.

We are now going to prove that the identification of the So far we have rigorously shown that the MF result for
mean-field approach as a theory of noninteracting particles i8(n) is not exact. However, one may wonder whether the
valid for the spatial distribution of nucleation events as well.error introduced by taking into account all meeting events
We adopt a continuum notation so that a single proof is suffollowing the first one is expected to be large or negligible.
ficient to demonstrate th&ty,(x) andp?(x) are proportional We address this issue by evaluating the relative weight of
in any dimension, for any value of the ES barrier and for anysuccessive encounters for noninteracting particles.

terrace shape. In the regimes of strong and infinite ES barrier Let us consider noninteracting particles and defijeas
this result is trivial because bogf(x) and Py, (x) are con-  the fraction of times thgth meeting event actually occurs.
stant. Clearly uo=1 andu;= u;j 4. Let us also define theormal-

We face the problem of determining the quanfRy;(x)  izeddistribution for thejth nucleation evenPjN'(n). Notice
for a pair of adatoms, one with initial distributiqsf?)(x,0)  that P}'(n)=PM)(n), the distribution for interacting par-
=pY(x) and the other with the effective distribution ticles.
pD(x,0)=peM(x) =2,p@(x,t) = p(X). The total distribution of nucleation sites is simply

We can consider the coordinates (x,) of the two atoms
(x1 are vectors in a-dimensional spageas defining the *
positionx=(x;,x,) of a single particle in a space of dimen- Pa(m =2 u;PM(n), (36)
sionality d’ =2d. This particle moves according to the dif- =1
fusion equatiory,p= (D/2) V?p. The factor} appears be- o )
cause of the different time steft employed in describing a @nd the quantitiesV andWy, are given by
single walker At=1/2dD) or two walkers At=1/2d'D)

on a terrace. W=y, 37
Integrating in time and defining(x) = [,dtp(x,t) one
finds w
5 Wy =2, PN.<n>=J§1 1. (38)
EVZP(X)=—p(x,O). (31

If we now introduce the normalized distribution of all
An interchange of the two particleg®(x,0)=pY(x) fictitious nucleations following the first one,
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» TABLE |. We report the nucleation rate and the correction
E ,ujP}\“(n) factor V' in the two regimes of weaki) and strong(ii) step-edge
=2 barriers and in one and two dimensions. The conditions defining

PNI —
PN (n)= = , (39 regimes (i) (7res=y) and (i) (7 <7es< Tgep) are written in
> M terms of the basic quantitidsD,D’,a,.
=2
we can write O )
D-D’ L D . L . a1
. . . i D’ < a_o E> a_o D >FL aO
Pai(n) = uqP) (n)+_§‘,2 1P (n)=WPMN(n)+PN(n) ® N a) N
=
d=1 FaL4 L F2L33, D
X (W= W). (40) D a_o T E
For weak barriers, inl=1, the weightw of the first term is d=2 F2L® In(L/ag)  F2L%a, Dag
constant, while the second one divergesLa#\s a conse- DIn(L/ap) D’ D'L

qguence, for largd the distributionPy,(n) is dominated by
the contribution of the fictitious successive nucleations. |

d=2 the f.|rst term goes as 1Llnyvhﬂ<_—:~ the s_econd IS CON" yoes not depend on the diffusion const@htso that the
stant. Again, for IargeL_, _the contribution of f'r.St _m_JcIeat|o_n nucleation rate cannot be promoted by using surfactants.
events be_comes n_egl_|g|_bl_e. For strong and_ |nf|n|te ba_mrners, Application of MFT is acceptable only in the regime of
W=1 while Wy, is infinite, so Py(n) coincides with vanishing barriers in two dimensions, because in this case

NI
Pz (n). i ... ... the correction factof N=In(L/ay)] is a small number, for
In all cases the MF expression for the spatial distribution, o ;jistic terrace sizes.

of nucleation site$Py,(n)] is dominated for largé by the In order to obtain exact expressions forit is necessary

contrlbut!on_ of the_ fictitious nucleations f(_)llowmg the f_|rst_ to have an accurate estimatewsf or equivalently olN .. W
one.A priori there is no reason for supposing that the dIStI‘I-iS a function of the terrace sizeand of the ES lengtifigc:
bution of thejth nucleation event is equal to the distribution for strong barrieraV'=1, while for weak barriersV~1 in
of the first one, so we expect that the difference between thg_ 1 oo 4w~ 1/InL in d;Z. So. for realistic values df. W
MF spatial distribution and the exact result persists for all ! '
values ofL. This will be checked and confirmed in the fol-

lowing paper21].

rtlg]. It is worth repeating that the nucleation rate in this limit

depends orL and €5 much more weakly than the other
quantities appearing im=FL2pW. However, its depen-
dence is not fully negligible: Figs.(8 and 1b) show that
(in d=2) for L=20, W varies by a factor 10 by changing
{5 from zero to infinity and folf .s= 0, W varies by a factor
This paper has been devoted to an accurate investigatich by changing the terrace size from=4 to L=32
of the mean-field approach to the problem of irreversible(In32/In4=2.5). For comparison, the quantity which ap-
nucleation. The main outcome is the proof that MFT ispears along withW in the expression fow, varies by a
equivalent to a model where particles do not interact and allactor 50 by changing gs/L from 0 to 6 and by a factor 64
their meetings are counted as fictitious nucleations. by changingL from 4 to 32, for€gs=0. The problem of the
In the regime of infinite ES barriers, MFT simply breaks exact determination oV will be tackled again in the follow-
down because it predicts a diverging nucleation rate, in coning paper/21].
trast to the correct value=FLY. In the other, physically A last comment on rate equations and mean-field approxi-
more interesting, regimes the equivalence of MFT with themation is in order here. According to the former, the nucle-
model of noninteracting particles implies thaj,= overesti-  ation rate is writterwge= ;D p? and the latter corresponds
mates the correct nucleation rate by the factdf to takingo; as a constant. In generat; is defined through
=Ng/Ngis. This ratio has a clear meaning: a diffusing ada-the relation®,=Do;p, where®; is the flux of atoms at-
tom passesV times on a visited site. It depends on single-taching to an adatom. The resulting relatiage=®,p is
particle quantities N,Ngs) Whose expressions are well exactif ®, is evaluated correctly; for example, we can solve
known from the theory of random walks. the diffusion equation for a single walker on the terrace,
In Table | we summarize the value of the correction factorwhere a second walker is taken as an absorbing sink. Since
Nin regimes(i) and (ii) and we report the approximate ex- we have shown that the nucleation rate can be evaluated
pressions for the nucleation rate They are approximate in assuming an atom as immobile, such treatment is essentially
the sense that numerical prefactors are neglected, but theprrect. In other words, if the capture number is not taken as
scale correctly with_.,D,D’,a,. The lattice constardy has  a constant, the expressiange=o;Dp? may give correct
been reintroduced in order to give dimensionally correctresults, but this method has nothing to do with the usual
espressions. Also, we have made explicit the dependence nfean-field approach.
fzsonD andD’, so that only basic quantities appear. Finally, with regard to the spatial distribution, we have
The expressiom~ F2L%a,/D’, valid in two dimensions provided a very general demonstration of the equivalence
for strong step-edge barriers has already been given in Rebetween mean field and noninteracting particles. We have

V. CONCLUSIONS
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also shown that the difference betwe(n) andPy,(n) is  In a continuum formalism, the equationi2p+F=0 and
not an effect of the finite size of the terrace and it remainghe solution ind=1 is

true for largeL. The full computation of the spatial distribu-
tion of nucleation events requires the solution of the dynami-
cal problem of two interacting atoms diffusing on a terrace.

This problem will be solved analytically and/or numerically ) ] o
in the following papeif21]. In d=2 the solution of the continuum equation is as easy

as ind=1 if we specialize to a circular terrace. lf now
denotes the radius, the solution for gendfig is

F
p(x)=ﬁ[€EsL+Lx—x2]. (A5)

ACKNOWLEDGMENTS
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Filippo Colomo. -

We finally evaluate the average densityon the terrace

APPENDIX A: SINGLE PARTICLE ON A TERRACE

In this appendix we summarize the behavior of a single p= @L(L+6€ES) d=1, (A7)
particle on a terrace for all values of the Ehrlich-Schwoebel
length € . _ F _
p= ﬁL(L+4€E5) d=2 [circular terracé (A8)
1. The stationary adatom density
The discrete evolution equation for a particle in a cubic 2. The dynamical problem in one dimension

d-dimensional space is . : . .
P We now summarize the dynamical behavior of a single

1 particle on a one-dimensional terrace. The two-dimensional
Pa(t+1)=54 > Poss(), (Al)  case is treated in the following section.
0 The discrete evolution equation for the particle is

wheren+ § indicates a neighbor of the site If we sum over t+1)=1 )+ t A9

t and define the quantity,=3;_ ,p,(t) we obtain Pa(t+ 1) =2[Pns2(t)+Po-2(D], (A9)
with the usual boundary conditionpy(t)=ap.(t) and
pL+1(t)=ap.(t). The solution is found by separating the

+20dpa(0)=0. (A2) space and time variableg,(t) =X(n)F(t),

2 Pn+s—2dpy
o

The terms in square brackets give the discrete Laplacian ~ F(t+1) NS X(n+1)+X(n-1)
of p,; therefore the surmp,=3,p,(t) is simply the solution F(t)y 2X(n) ’
of the stationary diffusion equation in the presence of the (A10)
flux 2dp,(0). . . ]

Ind=1, for constanp,(0), it is possible to find the exact The temporal part i&(t)=\"F(0). Thespatial part has the
discrete solution for any value df.s, once we remark that 9eneral form
the general solution of the homogeneous equatigs,iscg

+c.n and a particular solution of the nonhomogeneous
. . _ 2 . ) . . .
equation isp,= —c,n“ [the factorc, depending on the con- \yhich gives\ =cos¢. The boundary conditions determine

0<A<1.

X(n)=Asin(n¢)+Bcogne¢), (A11)

stant term in Eq(A2)]. the values ofA, B, and ¢.

Boundary conditions argo=ap; andp, .1 =ap,, where In particular, by imposing the boundary condition fin
a=€ES/(1+€ES) goes from 0 to 1 as the Ehrlich-Schwoebel _ 5 gne obtain®8=bA with b= asin ¢/(1—acose). Using
length €gs varies from 0 toe. this relation and imposing the other boundary condition in

The explicit expression g, is n=L+1 one obtains

1 (a’—1)sin¢g
=—[€gd +(L+1)n—n?]. A3 =
pn= [led-+( ) ] (A3) tan(L ¢) (Tt a)cosd—2a" (A12)
Its normalized version is This equation hag solutions that we label ag, with k
=1,...L. Then the general solution is
psz Pn 1 L
n a L(L+1)(L+2
S by e 24 m T2 Pa()= 3, c08(0Xi(), (AL3)
= =
X[€edl +(L+1)n—n?]. (A4)  with
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Xi(n) = Asin( ¢n) + Bycog ¢yn). (A14)

Givenp,(t) one can computg(t), the probability that an
adatom is still on the terrace at timeafter deposition(sur-
vival probability),

L
S(t)zgl Pn(t). (A15)

PHYSICAL REVIEW E66, 031605 (2002

) (kw)
s NS [ ke
AT LT DAL+ 2) [ k= Mo+
Si
2(L+1)
(A23)

As shown in Appendix Alpﬁ is the normalized version
of po==7_,pn(7) Wherep,(7) is the solution of the diffu-

Another important quantity is the residence time, defined asion equation with uniform initial conditiopy, . Writing ex-

S(t)] (Al6)

7'reszz t[S(t—1)—
=1

becauseS(t—1)—S(t) is the probability that the particle
stays on the terrace exactly a tirhdt is easy to check that

L
:2 Pn
n=1

[

% L
7'reSZE S(t)ZE {2 Pn(t)
t=0 n=1|t=0

(A17)

Recalling Appendix Al, for the initial distributiom,(0)

= ph’zl/L we have, for any value of the ES barrier,
(L+1)(L+2)
Tes= g +ed. (A18)

plicitly the sum we obtain

o] oo L
k@m \ [ nkw
ZO pn(T):Z 2 Alcos 1 sm(—L+1)
(A24)
L U
Ay nk
:kzl ) o sm( 51 (A25)
B N}
Hence
AY AY
Al X = X . (A26)
1-co Ll 2 sir? ke
L+1 2(L+1)

In order to pass to a continuous time we have to multiply

it by At=1/2D. For largeL, Tres™ L/D(L/12+€¢gd2). This
result agrees with the relatign= F 7, [See Eq(A7)].

Unfortunately it is not possible to solve explicitly Eq.

(A12) for generic values o&: we now discuss the two limit
cases where an explicit solution is possible.

a. Zero barriers

For £zs=0 (a=0), the allowed values op, are

_ k7 k=1 L A19
¢k_|_+1 (_ 1-'1) ( )

and the general solution is

[ nka
pn(t)—E Acos| —— 1) o (A20)
with

- nkar A21
2 pn(0)sinf ——— 11 (A21)

In particular, two forms ofp,,(0) are most interesting to
us. For a uniform distributiorpn(0)=p#=1/L the coeffi-

cients are
A, AU 2 L km\  [km 1 km
LM 2 315 2 /c0%e¢3 1
(A22)
For the distribution p,(0)=p>=6/[L(L+1)(L+2)]n(L

+1—n) [see Eq(A4)], the explicit solution is

as can be easily verified by comparing E422) with Eq.
(A23).

If we sum p,(t) overn [see Eq.(A20)] we obtain the
survival probability

z A cod L ko \ _ (kam
S(t)= K CO 71 S|n2|_+1 sm7
x L km A27
cose zm . ( )
The distributionp,(t) is in general a sum of exponential
decays
L
t)=2 Ay sin & exp tinco k—w
Pn()= 2, Acsin 7 L+1

(A28)

It can be considered as a single exponential when the second
slowest decaying exponential is negligible. Hox1 this

means
2\ %t L?
expg — T/ 2 <l = t> 277227'". (A29)
Hence, fort> 7y, ,
A an
pn(t)=Aqsin ——— 11/ f =
=A ! A30
1SNl —— 1 ex Tres . (A30)
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For the same reason, fo¥ 7,

2(L+1) t
S(t)=A,; P(- —) (A31)

Tres

2
exfgtincog ¢,)]<1 = t>;zL2z7-tr. (A40)

Hence for times larger than, one can write

b. Infinite barriers

For {gs=o0 (a=1) the allowed values o, are pn(t)=B; cog n — 2 cod| /i
" Lles Les

=— (k=0,...L-1 A32
O ) (A32) =B, exp| — : (A41)
andA, =B tan(kw/2L), so that the general solution is
L-1 whereB;=1/L and 7,.s=L{gs. This value ofr.s, multi-
p(t)= 2 Ay coé( )xk(n) (A33)  plied by At=1/2D coincides with its continuum counterpart
where
K nkar nkar 3. The dynamical problem in two dimensions
Xi(n)=|t ’(ZL)S”‘( L +C°5( L (A34) It is useful to summarize here some results for a single
particle on a two-dimensional terrace. The general solution is
The coefficientsA, depend on the initial condition
through the relation L
1 ko
Lt Pmn(= 2 Akii| 04 {37
A= 2 Pa(0)Xi(n), (A35)
k n=1 t
+co Xk (m)Xi(n A42
where (6, is the Kronecker symbpl S(L+1 mXim), (842
L
Ni=5 1+tar? (1+ 8y0). (A36)  where the coefficients; are
pn(t) is the sum of a constaitthe term fork=0) and expo- 1 L
nentially d_ecaying Fe_rmsk_(>0). Forpn(O)_z_llL,_the only A= NN, Z Pm.n(0) X (M)X;(n). (A43)
nonvanishing coefficient i&\o=1/L and this implies for all k
times

1 For zero barriersX,(n)=sinnkx/(L+1)] and N,=(L
Pa(t) =1 (A37)  +1)/2. For a uniformly distributed adatorp;, ,=1/L? and
the coefficients are
In the general case of nonconstapt0), theexponential
decays are negligible when dxp(m/L)%/2]<1, that is to

sayt>(2/m?)L%=r,. U A UAU 2 [k jm Lk
A =ACA; =[— sin(—) sin(—) sin 5———~
c. Strong barriers : : L(L+1) 2 2 2(L+1)
Let us consider now the case of finite but lame (¢gs .| Ljm Kk jm

>L). The solution of Eq(A12), with a—1 and large but xsin 2(L+1) cs 2(L+1) cs 2(L+1) | (A44)
fixed L, yields, for the two smallespy,

\/2(1—a) \/ 2 We indicate ap}, , the normalized solution of the station-

1= L Vi (A38) ary diffusion equation in the presence of a constant flux.

Differently from what occurs in the one-dimensional case,
T the explicit form ofpm » is not known exactly for a square
$o= +O(1-a). (A39)  terrace. However, the expression of its coefficiehfs can
be obtalned by exploiting the propertgee Appendix AL
The slowest decays in the general solution are thereforthat pmn NZ7_oPmn(7) Wherepp,,(7) is the solution of
exp(— ¢2t/2) and expf ¢3t/2). For finite values of. we can  the diffusion equation with uniform initial condmom;mn
neglect the second exponential for times such that =1/L% andN=1/7,.¢ iS @ normalization factor
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o o) L . .
1 kar jm \|T . [ mkw njm
= +
E Pmn(7)= 20 kalAklzf COS(L+1) C05(L+1 S'”(L+1 Sin 57
L .
> A sin mr sin| 27 (A45)
k,jzll 1 kr j L+1 L+1/)°
B R T A Y
|
Hence The sumZ p,(7) has been shown in Appendix Al to be
y equal to the solutiop,, of the stationary diffusion equation,
s Ay which always has a parabolic shape. Its normalized version
AZ=N . (A46) S
] 1 1 K N jm Pn 1S
2|91 T L

The numerical prefactoN can be determined by imposing

that the sum ovem andn of p%n is 1, that is

> A8 MK | i =1 A4T7
mn kj kJSIn L+1 sin L+1) ( )
which implies
1 [LL+1n]? (A)?
N | 2 o, 1 kar N jm
2| L1 TN Lt
(A48)
In the limit of largelL,
1 [L(L+1)]2  (A])? 27
Tres:N: 2 . - 2?
e T
(A49)
Hence in the continuun, .= (32/7%)L%/D and
32 A50
B="%- (A50)

In the limit of strong but finite barriers one findg.g

=L{€gs/(4D), so thata=1/4.

APPENDIX B: THE EFFECTIVE DISTRIBUTION

We want to evaluate the effective distribution

Eﬁ_z Pdep( Pn(T

introduced in Sec. lll A. Sincg,(7) decays to zero after a
time of order 7.5, for regimes(i) and (i) (where 7,¢¢

(B1)

<74ep) Paed 7) Can be taken as a constant. Hence

2 Pn(7)

Ty dep 7=0

[() and(ii)].

(B2)

pn: L :T_’ (83)
res
ngl Pn
so that
eff T’espﬁ [(i) and(ii)]. (B4)

This equation corresponds to E(.4) in the limit 7.
<Tdep-

For strong and infinite barriefsegimes(ii) and(iii)], the
contribution of times shorter than, is smaller thanr, / 74¢,
and therefore negligible. Accordingly, we can evaluate the
sum(B1) using the expression fqu,(7) that is valid in the
limit 7> 7, [see Eq.(A41), in d=2 the generalization is
trivial], pp(7) = (1/LY) exp(— /7.9 and obtain

1 oo
prl=—— > ex;{—r (B5)

L Tdep =0

|
Tdep Tres

Converting the sum over discrete times into an integral, we
have

Tres 1 _ Tres
=

ff s
pr = P, (B6)
" Trest Tdep TresT Tdep "
where—as usualgS is the normalized solution of the sta-

tionary diffusion equation. Thus, formuld4),

Ty
pef——=—p? (B7)

Trest Tdep

can be used in all the different regimes.

In the continuum it is possible to work out a more rigor-
ous approach and determipaéff as the solution of a differ-
ential equation, which is the generalization of the stationary
diffusion equation(3). We start with the diffusion equation
for p(x,t), dp=DV?p, wherex is ad-dimensional vector.

If we multiply both sides byP4{t) and integrate in time, we
obtain
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oc . [ wherely andl, are the modified Bessel functions of order
JO dtPgedt)dip(x,t) =DV fo dtPgedt)P(x,t). (B8)  zero and one, respectively. The arguments of the Bessel func-
tions are at most equal to/\D 74ep= \87y / Tgep @ small
The right-hand side is jusbV2p®f(x) while the left-hand duantity. An expansion of the Bessel functions gives
side is

“ . a1 LPH2€ed —r? 51
jO dtpde&t)atp(xit): Pdep(t)p(x’t)|0 p (r)—']TLZ 4DTdep+ L(L+2€ES) . ( )
- fo At 9;Paed ) JP(X,1) By using the result$A6) and (A8), after some algebra we
obtain the final expression
t 1 + ! fxdtP t)p(x,t)
= — —_ X’
Tgep A Tdep)o el P eff Tres s

(B9) pi(r)= L7l le pS(r), d=2. (B13)

and Eq.(B8) becomes Tdep™ B(Z + 7)

2 eff _ 1 eff —
DV?p*(x) - —p*(x) + F=0. (B10)

dep The calculation id=1 leads to the result

It differs from the stationary diffusion equatioBV?p

+F=0 because of the presence of a “desorption” term off Tres s
[—p®(x)/ 74¢p] that is the responsible of the saturation of p(x)= L/l e p>(x), d=1. (B14)
pefi(x) at large¢gs. As a matter of fact, in the limifgg Tgept D §+ 7)

—o, p is known to diverge asR/D)L{gs [see Eqs(A7)
and (A8)] while the above equation clearly shows that
pef(x) goes to the constamtrye,=1/A.

The exact solution of EqB10) can be found both i
=1 and ind=2 for a circular terrace and the proof that
P(X) = Tres/ (Tres+ Taed P3(X) Works much in the same
way in the two cases. We give here some more details for th
bidimensional case. The solution of E&10) with the usual
boundary conditiors, p&(r) = — p®f(r)/€gs evaluated for
=L (the radius of the circular terraces

The quantityL/D(- - -) appearing on the right-hand side
in the denominator does not coincide with,s because the
term L?/D has a prefactof instead that; in d=2 and a

refactors instead thats in d=1. Nonetheless such quan-
ity differs from 7, for a quantity of orderr, which can be
safely neglected with respect tg, (always appearing in
the denominatgrso that, in the limitr, <74e, (@ limit ap-
plied throughout the papewe can conclude that the relation

r

lo

1 \/D’Tdep T
p*i(r)=—| 1- : efi(x)= —— > pS(x B15
L I L €ES L p ( ) Tdep+ Tresp ( ) ( )
° \/DTdep \/DTdep ' \/DTdep

(B11) is always valid.
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