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Process of irreversible nucleation in multilayer growth. I. Failure of the mean-field approach
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The formation of stable dimers on top of terraces during epitaxial growth is investigated in detail. In this
paper we focus on mean-field theory, the standard approach to study nucleation. Such theory is shown to be
unsuitable for the present problem, because it is equivalent to considering adatoms as independent diffusing
particles. This leads to an overestimate of the correct nucleation rate by a factorN, which has a direct physical
meaning: on average, a visited lattice site is visitedN times by a diffusing adatom. The dependence ofN on
the size of the terrace and on the strength of step-edge barriers is derived from well-known results for random
walks. The spatial distribution of nucleation events is shown to be different from the mean-field prediction, for
the same physical reason. In the following paper we develop an exact treatment of the problem.
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I. INTRODUCTION

A crystal can be produced artificially with different tec
niques: we can pull it from the melt, grow it from a solutio
or obtain it via deposition from a gas or vapor phase ont
suitable substrate. One of the key mechanisms of the gro
process is the formation of supercritical nuclei, that is
nucleation—via diffusion and aggregation—of crystalli
clusters whose growth rate exceeds the decay rate.

In this paper we devote our attention to epitaxial grow
by atomic or molecular beams@1#: particles travel ballisti-
cally towards the growing surface where they undergo a th
mally activated diffusion process. The sizei * of the critical
nucleus is typically a few units and its actual value depe
on several factors: the substrate and the type of adat
deposited determine the activation barriers for the differ
atomistic processes, while the temperature and the flux
termine what processes are really relevant on the time s
of the experiment. Here we consider the simplest case: nu
ation is irreversible (i * 51), i.e., once two adatoms me
they form a stable dimer. After nucleation, the stable nucl
grows by capturing other adatoms.

We start by explaining in general terms the role of nuc
ation in the different stages of epitaxial growth and by d
cussing how rate equations and mean-field theory deal
it. The focus of the rest of the paper will be on nucleation
top of terraces bound by descending steps~often called sec-
ond layer nucleation!.

In the submonolayer regime diffusion takes place on
substrate: adatoms are deposited randomly and they dif
until they meet another wandering adatom or a growing c
ter.

Rate equations@2# are widely used to describe the pr
cesses of adatom capture and adatom detachment from
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ters ofj atoms (j clusters,j >2). If only adatoms are mobile
the spatial densityr j of j clusters varies in time according t
the relation@3# ] tr j5U j 212U j , whereU j is the net rate of
the process (j cluster)⇒( j 11 cluster).U j is the sum of a
‘‘growth term’’ and a ‘‘decay term’’: the growth term repre
sents the aggregation of an atom into aj cluster and it has the
form s jDrr j , wherer is the adatom density,D the adatom
diffusion constant, ands j is an adimensional capture num
ber; the decay term represents the thermal detachment o
atom from a (j 11) cluster and it has the form
2(4D/a0

2)r j 11exp(2DE/T), wherea0 is the lattice constan
andDE is the energy difference between aj cluster~plus a
free adatom! and aj 11 cluster. Ifi * 51 such term is absent
because allj clusters are stable and the nucleation rate
vRE5s1Dr2 ~the subscript standing for ‘‘rate equations’’!.

The capture factors j is defined through the fluxF j of
adatoms attaching to thej cluster: F j[Ds jr, and it ac-
counts for the different adatom densities surrounding isla
of different size. In a mean-field~MF! approach such densit
is taken as a constant,s52d @4# and the nucleation rateper
lattice site readsvMF52dDr̄2.

By monitoring the adatom densityr̄ and the total density
of islandsr̄TOT5( j >2r̄ j one realizes the existence of a r
gime characterized byr̄TOT almost constant in time, prior to
the coalescence regime@5#. The average distance,D between
islands can therefore be defined as,D

d 51/r̄TOT , d being the
dimensionality of the substrate: usuallyd52, but in the fol-
lowing we will considerd51 as well.,D is called the dif-
fusion length and it also gives the typical linear distan
traveled by an adatom before being incorporated in an isla

During the time 1/F, necessary for the deposition of
monolayer, there is on average a nucleation event per are,D

d

@6#. Therefore, according to mean-field theory,vMF,D
d /F

;1, i.e., D r̄2,D
d /F;1 with ~see Appendix A1! r̄

;(F/D),D
2 . So we obtain the result,D;(D/F)g, with g

5 1
5 in d51 andg5 1

6 in d52. This relation is wrong in one
dimension, but essentially correct in two dimensions@6,7#. In
Sec. IV A it will become clear that mean-field theory~MFT!
gives the correct result forg in d52 because step-edge ba
riers at island edges play no role in the submonolayer

’
7

gime.
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If adatoms freshly attached to a growing nucleus are
mobile the resulting island is normally fractal, but if they c
diffuse along the step-edge the island gets compact. Com
islands are therefore obtained at not too low temperatures~so
that thermally activated edge diffusion actually occu!
whilst nucleation is irreversible at not too high temperatu
~so that a dimer is thermally stable!. In some experimenta
systems both conditions are fulfilled in a given temperat
range: Pt~111!/Pt in the range 350–430 K@8#, Ag~100!/Ag in
the interval 200–300 K@9#, and Fe~100!/Fe between 300 and
500 K @10# are some examples.

Once island coalescence has set off, most nuclea
events take place on top terraces. The obvious reason is
even for layer-by-layer growth a new atomic layer starts
form before the completion of the previous one and con
quently the growing surface is made up of a certain num
of exposed layers. Terraces can be classified as top (T), vici-
nal (V), and bottom~B! terraces according to the type o
steps surrounding them: in general only top terraces atta
size large enough to have a considerable probability
nucleating a new island. Since this probability grow
abruptly from zero to one with increasing terrace size@11#, it
is possible to introduce a critical nucleation length,nuc @12#.
In the presence of step-edge barriers@13#, hindering inter-
layer transport, such length differs for the three types of
races:,nuc

T goes to zero with increasing barriers while,nuc
V

and,nuc
B remain finite in such limit@12,14#. Nucleations gen-

erally occur on top terraces because the size of the vic
and bottom terraces hardly reaches the nucleation len
However, nucleation is a stochastic phenomenon and th
fore dimer formation may also occur on vicinal terraces
ery now and then, while on bottom terraces it is an exce
ingly rare event. These occasional ‘‘vicinal nucleations’’ a
an important stabilizing mechanism of the surface, eve
their relative weight decreases as barriers increase@15,16#.

The mean-field approach to evaluate the nucleation
for ~reversible and irreversible! nucleation on top terrace
has been worked out by Tersoff, van der Gon, and Tromp
Ref. @11# and since then their results have been widely u
to analyze experimental data and extract the values of s
edge barriers. The mean-field approximation can also
used in ‘‘mesoscopic’’ models of growth@17# for implement-
ing the rule for the spatial distributionP(x) of nucleation
events, via the relationP(x)}r2(x).

Recently, several authors@18–20# have started to review
critically the MF approach. In Refs.@18,20# authors are
mainly interested in the validity of MFT for different value
of the critical sizei * : this check has been done throug
scaling analysis and kinetic Monte Carlo simulations.
deeper investigation of the irreversible case (i * 51) is done
in Ref. @19# in the limit of strong step-edge barriers, throug
a quantitative approach based on the different time sc
involved in the nucleation process.

The inaccuracy of MF theory in dealing with the proble
of second layer nucleation has therefore already been poi
out in the literature. In this work we analyze thoroughly t
validity of the MF theory for irreversible second layer nucl
ation, we rigorously prove its inadequacy both for the nuc
ation ratev and the spatial distributionP(x) of nucleation
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sites and understand the physical origin of its failure. In
following paper@21# we compute exactlyv and P(x), pro-
viding the correct expressions that must be used in plac
the MF approximations.

We have organized this paper as follows. The three
evant time scales for the nucleation process and the as
ated regimes are introduced and discussed in the follow
section. In Sec. III we explain how we can get rid of th
stochastic nature of the deposition process~Sec. III A! and
we introduce the quantities of interest in the paper, the spa
distribution of nucleation events~Sec. III B!, and the nucle-
ation rate~Sec. III C!. In Sec. IV we show the equivalence o
MF theory with a model of noninteracting particles, both f
the nucleation rate~Sec. IV A! and for the spatial distribution
~Sec. IV B!. The final section contains a critical summary
the results.

A short report of this work has been published in R
@22#.

II. TIME SCALES

We consider a top terrace of fixed linear sizeL, subject to
a flux F of particles. Once on the terrace, each particle mo
with a diffusion constantD until it meets another particle o
it leaves the terrace. At step edges an additional energy
rier, usually called Ehrlich-Schwoebel~ES! barrier @13#, re-
duces the rateD8 of interlayer transport and the ES length

,ES5S D

D8
21D a0 ~1!

measures the asymmetry betweenD andD8. In the follow-
ing the lattice constanta0 will be taken as unit length (a0
51).

In general, throughout the paper we will consider discr
space and time, i.e., particles moving on a lattice~a square
lattice ind52), at fixed time steps. However, we will some
times use a continuum notation as well. The matching
tween discrete and continuum is straightforward: iftc is a
continuous time andtd its discrete counterpart~number of
time steps!, then tc5tdDt, whereDt51/(2dD) is the time
an atom remains on each lattice site.

Let us now discuss the three time scales involved in
problem@19#.

~1! The traversal time (t tr) is the average time needed b
a diffusing particle to reach the terrace boundaries. In
largeL limit

t tr5bL2/D, ~2!

whereb is a numerical prefactor depending on the dime
sion d and the shape of the terrace. Its value is discus
after Eq.~4!.

~2! The residence time (t res) is the average time a particl
spends on the terrace. It is related to the average densityr̄ of
adatoms via the relation@19# r̄5Ft res , where the densityr
~and therefore its average valuer̄) can be determined~see
Appendix A1! by solving the stationary diffusion equation i
the presence of a constant fluxF,
5-2
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D¹2r1F50. ~3!

Boundary conditions depend on the strength of the ES ba
at descending steps. If the equilibrium adatom density—
to thermal detachment from steps—is neglected, the bou

ary condition for r is ]'rustep5
r

,ES
ustep, where ]' is the

local derivative in the direction perpendicular to the st
~directed inward the terrace!. In a discrete picture~for ex-
ample ind51) if n51 is a lattice site at the edge of th
terrace andn50 is its fictitious neighbor outside the terrac
we have r(1)2r(0)5r(0)/,ES, i.e., r(0)5,ES/(1
1,ES)r(1)[ar(1).

The solution of Eq.~3! ~see Appendix A1! gives the fol-
lowing result, valid both in one and two dimensions:r̄
5(F/D)(bL1a,ES)L, wherea is another numerical facto
depending on the dimensiond and on the shape of the te
race. We can finally write

t res5~bL1a,ES!L/D. ~4!

In the absence of ES barriers (,ES50) t res andt tr are equal.
From Eqs.~A7!, ~A8!, ~A18!, and ~A50! we infer that ind
51, b51/12 anda51/2. In d52, for a circular terrace of
radiusL, b51/8 anda51/2, while for a square terrace,b
.32/p6 anda51/4.

In the discrete picturet res is clearly equal to the tota
number of sites (Nall) visited by an atom during its diffu-
sional motion on the terrace. Since the adatom stays o
lattice site a time 1/(2dD) we have t res5Nall /(2dD).
Hence, the residence timet res , the average densityr̄ and the
numberNall of all sites visited by the adatom carry the sam
piece of physical information, onceF and D are set. The
quantity Nall should not be confused with the number
distinctsites (Ndis) visited by an adatom: a given lattice sit
visited k times, contributes for 1 toNdis and fork to Nall .

~3! The deposition time (tdep) is the average time be
tween a deposition event and the next one. For a terrac
areaA5Ld,

tdep5
1

FA 5
1

FLd . ~5!

Physically sensible values forF, L and D imply that t tr
!tdep. This relation indeed isL2/D!1/FLd, i.e., D/F
@Ld12: we can now recall the diffusion length@23# intro-
duced in Sec. I,,D;(D/F)g and measuring the ‘‘maximal’
size of a terracein the absenceof step-edge barriers. Fo
irreversible nucleation the exponentg is equal to @23#
1/2(d11) so that we obtain the condition,D

2(d11)/(d12)

@L, i.e., ,D
4/3@L in d51 and ,D

3/2@L in d52. Smooth
growth requires that,D@1; furthermoreL is at most of order
,D if ,ES50, but for finite barriers it is~much! smaller. We
conclude that the above conditions are fulfilled and that
can safely suppose thatt tr!tdep.

This inequality has a consequence of primary importan
processes involving more than two adatoms at a time ca
fully neglected. Once two adatoms are simultaneously on
03160
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terrace, they meet—if they do—on the time scale of the t
versal timet tr . This fact is intuitively clear and it is proven
in Ref. @21#. The probability that a third atom lands in th
meanwhile ist tr /tdep, negligibly small. Irreversible nucle
ation is therefore the result of two-adatoms processes on

Depending on the relative size oft res with respect to the
other two time scales, three different regimes may occur

t tr.t res!tdep zero or weak barriers@regime~i!#, ~6!

t tr!t res!tdep strong barriers@regime~ii !#, ~7!

t tr!tdep!t res infinite barriers@regime~iii !#. ~8!

The difference between the three regimes is easily un
stood. A nucleation may occur only if a new adatom is d
posited before the previous one leaves the terrace. Ift res
!tdep @regimes~i! and ~ii !# this is a rare event. When i
happens, the second atom finds the first one with a sp
distribution that differs in cases~i! and~ii ! ~see Appendix B!.
If ,ES!L @regime~i!# when the adatom reaches the edge
the terrace, it gets off. Steps act as absorbing boundaries
the adatom density vanishes there:r has a parabolic shap
with a maximum in the middle of the terrace~see Appendix
A1!. If ,ES@L @regime~ii !# the adatom is pushed back from
the terrace edge several times before being able to desc
Steps act as~imperfect! reflecting walls andr is approxi-
mately uniform over the whole terrace. In regime~iii ! when
a new adatom is deposited it always finds the previous
still on the terrace, they both have a flat distribution and th
will certainly meet.

III. GENERAL FORMALISM

In the present and in the following paper~Ref. @21#! we
are going to use a discrete formulation for particle dynam
both in space and in time. In this section,n indicates the
whole set ofd integer numbers specifying the position of
particle on the terrace. A nucleation event is assumed to
cur when two adatoms are on the same lattice site, ra
than on neighboring lattice sites: this definition avoids u
less mathematical complications, but retains all the phys
of the nucleation process.

A. Reduction to two particles deposited simultaneously

It is clear that the problem of dimer formation on a terra
involves the study of the diffusion of two particles deposit
at different times: the spatial and temporal distributions o
landing events play therefore a prominent role. The incom
flux of particles is supposed to be spatially and tempora
uniform @24#: a particle arrives on each lattice site with un
form probability pn

U[1/Ld and the interarrival timet be-
tween two deposition events decays exponentially@25#,

Pdep~t!5exp~2t/tdep!/tdep. ~9!

Let us now consider any ‘‘two-particle’’ quantityO, i.e.,
any quantity depending on the initial distributions of partic
1 and 2 and on their interarrival timet.
5-3
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Let pn(0)5pn
U51/Ld be the initial uniform distribution

of an atom andpn(t) its dynamical evolution at timet ~in
the absenceof other particles!. If particle 1 is deposited a
time zero and particle 2 a time t later, we call
O$pn

(1)(t),pn
(2)(0)% the resulting physical quantity.O might

be, for example, the probabilitypnuc that a deposited particle
nucleates a dimer before getting off the terrace@see Eq.
~19!#. OnceO$pn

(1)(t),pn
(2)(0)% is known, one should evalu

ate its average overt,

Ô5 (
t50

`

Pdep~t!O$pn
(1)~t!,pn

(2)~0!%. ~10!

The crucial point is that ifO is linear in the initial distribu-
tionspn

(1,2) of the two atoms~as all quantities discussed in th
paper are!, the above equation can be rewritten as

Ô5O$pn
eff ,pn

(2)~0!% ~11!

in such a way that the average overt is now included in an
effective initial distribution

pn
eff5 (

t50

`

Pdep~t!pn
(1)~t!. ~12!

We can make more explicit the physical content of t
above reasoning, which is based on the linearity with resp
to the initial distribution of the two particles. Atom 2 is de
posited with probabilityPdep(t) a timet after atom 1, which
means that atom 2 has the probabilityPdep(t) to find atom 1
distributed according topn

(1)(t): on average—and it is now
that linearity comes into play—atom 2 finds atom 1 with t
effective distribution given in Eq.~12!.

In this way we have reduced the problem of evaluatingÔ
to the evaluation ofO for two particles deposited simulta
neously. Thus we can ignore the stochasticity of the dep
tion process and assume that atoms 1 and 2 landat the same
time, but the actual initial distribution for atom 1~the uni-
form distribution! is replaced bypn

eff .
The next task is then the determination ofpn

eff . The func-
tion pn(t) ~discussed in Appendix A2! is the distribution of
the first adatom at timet, i.e., the solution of the diffusion
equation for a single particle with initial condition

pn~t50!5pn
U5

1

Ld . ~13!

The sum ofpn(t) over all timest is the solution of the
stationary diffusion equation~3! ~of its discretized version
actually, see Appendix A1!, whose normalized form will be
indicated withpn

S (S standing for stationary!. It has, in gen-
eral, a parabolic form, and in particular ind51, pn

S

5@,ESL1(L11)n2n2#/[ ,ESL
21

1
6

L(L11)(L12)].

In Appendix B it is shown that in all dimensions we ca
write
03160
ct

i-

pn
eff5

t res

tdep1t res
pn

S . ~14!

The physical content of Eq.~14! is readily understood. Fo
infinite barriers@regime ~iii !# pn

eff5pn
S51/Ld: the first par-

ticle cannot escape from the terrace and its distribution
still uniform and normalized when the second one lands.
strong but finite barriers@regime ~ii !# pn

eff5(t res /tdep)pn
S

5(t res /tdep) (1/Ld): most of the particles that arrive on th
terrace leave it before another particle lands, but the dis
bution of the first particle remains practically uniform b
cause many attempts are needed to overcome the ES ba
In the limit of zero or weak barriers@regime ~i!# pn

eff

5(t res /tdep)pn
S andpn

S vanishes on the edges, reflecting t
presence of the absorbing boundaries.

B. The spatial distribution of nucleation events

In the preceding section we have explained how to tra
form the original problem into the new problem of two a
oms deposited at the same time, with normalized distri
tions pn

S ~the first! and pm
U ~the second!. We can now define

the probabilityR(n,t) that a nucleation event occurs on si
n at time t and introduce the following quantities:

P~n!5(
t

R~n,t !, ~15!

W5(
n

P~n!. ~16!

P(n) is the spatial distribution of nucleation events andW
is the probability that two atoms, both on the terrace at ti
zero, meet before leaving the terrace. It is useful to cons
the normalized spatial distribution P(N)(n)5P(n)/W as
well.

C. The nucleation rate

The nucleation ratev is defined as the number of nucle
ation events per unit time on thewhole terrace of sizeL,
irrespective of the spatial location of the meeting point. T
quantity is of great importance because it is related to
probability of second layer nucleation. In a classical expe
ment@26# a fraction of a monolayer is deposited on the su
strate and the size of islands is made as uniform as pos
through an annealing procedure. Starting from this temp
a second dose of atoms is deposited and nucleation on to
existing islands is monitored.v(L) enters in the interpreta
tion of this experiment because the probabilityP(t) that a
nucleation event has occurred on a terrace by timet is P(t)
512exp$2*0

t dtv@L(t)#%. The rate v(L) is defined and
evaluated for a constant terrace sizeL: in the experiment
instead,L grows in time and the time dependence ofL is
‘‘system-dependent.’’ Hence, the growth lawL(t) of the ter-
race size must be supplied beyondv(L), and it depends on
the specific morphology of the surface and the experime
setup. In other words, the nucleation rate—on the o
5-4



t
an
n
io

d
a
he

re

,
a

le
b

s
e

en

t

th
i
o

fo

e

ome
ms
out
ith
n if
nd

leav-
us

the

.’’

nd
n
the

de-

es
n-

ting

f
r
o

s

PROCESS OF IRREVERSIBLE . . . . I . . . . PHYSICAL REVIEW E 66, 031605 ~2002!
hand—has a very general and basic meaning, but—on
other hand—it can hardly be measured directly. This me
that, despite our results forv(L) being exact, the evaluatio
of L(t) introduces some approximations in the interpretat
of experimental results, whose accuracy depends on the
tail of the system considered. In addition, some second
effects, as steering and nonuniform barriers, may furt
complicate the problem.

We now connectv to P(n) and W. In Sec. II we ex-
plained that only processes involving two adatoms are
evant for studying irreversible nucleation, becauset tr
!tdep. If we define the nucleation probability per atom
p̂nuc, we can write the nucleation rate as the number of
oms landing on the terrace per unit time (FLd51/tdep) times
the nucleation probability per atom,

v5FLdp̂nuc. ~17!

The quantityp̂nuc is the probability that a deposited partic
nucleates a dimer before getting off the terrace and it can
written as

p̂nuc5 (
t50

`

Pdep~t!pnuc$pn
(1)~t!,pn

(2)~0!%, ~18!

where the dependence on the initial distributions of atom
and 2 has been made explicit. We stress that the depend
on the initial distributions occursvia the full diffusion pro-
cess. For example, for independent particles in one dim
sion, the explicit form ofpnuc is

pnuc$pn
(1)~t!,pn

(2)~0!%5 (
m51

L

(
t50

`

pm,m~ t !$pn
(1)~t!,pn

(2)~0!%,

~19!

wherepm,m(t) is the solution of the diffusion equationin two
dimensionswith the initial condition given by the produc
p(1)(t)p(2)(0) ~see Ref.@21# for more details!.

Because of the linearity ofpnuc, we have

p̂nuc5pnuc$pn
eff ,pn

(2)~0!%. ~20!

The nucleation probability per atom can be thought as
probability that atom 1 is still on the terrace when atom 2
deposited, times the probability they meet before getting
the terrace. This is exactly what emerges from Eq.~20! once
expression~14! for the effective distributionpn

eff is inserted,

p̂nuc5
t res

tdep1t res
pnuc$pn

S ,pn
(2)~0!%. ~21!

The normalization factor ofpn
eff is the probability that

atom 1 is still on the terrace when the next one shows up;
infinite ES barriers (t res@tdep) such a probability is trivially
1, while for weak and strong barriers (t res!tdep) it is
t res /tdep. The remaining quantity on the right-hand sid
(pnuc$pn

S ,pn
(2)(0)%) is the probability that two atoms,both on
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the terrace at time zero@pn
S and pn

(2)(0) are normalized#,
meet before descending. Therefore it coincides withW and
we finally obtain

v5FLd
t res

tdep1t res
W. ~22!

D. Noninteracting particles

We are considering a system such that once adatoms c
together an immobile dimer is formed irreversibly: adato
stop diffusing and the dimer does not dissociate. It turns
to be of great help to consider also an artificial model, w
adatoms treated as independently diffusing particles: eve
they meet on the same lattice site they go on diffusing a
therefore they can cross each other several times before
ing the terrace. We consider all these meetings as ‘‘fictitio
nucleations,’’ and define also for noninteracting particles
quantities mentioned above: the nucleation ratevNI , the spa-
tial distributionPNI(n), and the total numberWNI of nucle-
ation events, the subscript NI standing for ‘‘noninteracting

IV. EQUIVALENCE OF MEAN-FIELD THEORY
AND NONINTERACTING PARTICLES MODEL

A. The nucleation rate

We have introduced the nucleation rate in Sec. III C a
obtained Eq.~22!. W is the nucleation probability betwee
two atoms that are both on the terrace at time zero. For
model of noninteracting adatomsW should be replaced by
WNI , the average number of meetings between the two in
pendent particles. Of courseWNI can be larger than 1.

The simplest and less interesting case is the regime~iii ! of
infinite barriers. In such a caseW is trivially 1 and v
5FLd51/tdep, i.e., any particle deposited on a terrace do
form a dimer. In a sense, this limit is unphysical for mea
field theory becauser̄ and vMF52dDLdr̄2 diverge when
,ES→`.

In the other two regimes~weak and strong barriers!, Eq.
~22! becomes

v5FLd
t res

tdep
W5FL2dr̄W, ~23!

where we have used the relationstdep5(FLd)21 andFt res

5 r̄. We can repeat the same procedure for noninterac
particles and obtain

vNI5FLd
t res

tdep
WNI5FL2dr̄WNI . ~24!

It is possible to relateW andWNI to single-particle quan-
tities, Ndis and Nall ~see Sec. II!. They are the number o
distinct (Ndis) and all (Nall) sites visited by a single walke
diffusing on the terrace@27#. Let us assume one of the tw
adatoms fixed on sites. w(s) is the probability that the dif-
fusing adatom visits sites before getting off the terrace.W is
then the average value ofw(s), W.(sw(s)/Ld. The quan-
tity (sw(s) is nothing but the total number of distinct site
5-5
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Ndis visited by the diffusing adatom, so thatW.Ndis/Ld.
The same argument for noninteracting particles givesWNI
.Nall /L

d.
The relations

W.
Ndis

Ld
and WNI.

Nall

Ld
~25!

have been derived under the assumption that one ato
immobile. In Fig. 1 we compare numerically the values
single-particles quantities (Ndis/Ld,Nall /L

d) with two-
particle quantities (W,WNI). The former have been calcu
lated via Monte Carlo simulations and the latter through
numerical solution of the discrete diffusion equation for tw
atoms on a terrace~discussed in detail in Ref.@21#!: it comes
out that relations~25! are well satisfied, so that assuming o
atom as immobile is perfectly reasonable for the evalua
of W andWNI .

If we insert the relations~25! into Eqs.~23! and ~24! we
obtain

v.FLdr̄Ndis, ~26!

FIG. 1. ~a! Log-log plot of W ~empty circles!, Ndis /L2 ~full
circles!, WNI ~empty squares!, Nall /L

2 ~full squares! versus,ES for
d52 and L520. ~b! The same quantities plotted versusL for d
52 and,ES50.
03160
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vNI.FLdr̄Nall . ~27!

Since Nall is related to the residence time byt res
5Nall /(2dD), we can write

vNI.2dFLdr̄Dt res52dDLdr̄25vMF . ~28!

In this way we have shown that for the nucleation ratethe
mean-field treatment is equivalent to considering particles
noninteracting, i.e., counting also meeting events followin
the first one. For this reason the mean-field value is an o
estimate of the correct nucleation rate. Furthermore we h
proven that

vMF

v
.

WNI

W
.

Nall

Ndis
[N. ~29!

In Fig. 2, the comparison ofvMF /v, computed exactly in
the companion paper@21# with Nall /Ndis, evaluated numeri-
cally, shows clearly that Eq.~29! is valid with great accuracy

The correction factorN depends on well-known proper
ties of single particles performing a random walk. The n
meratorNall is just ~see Sec. II!: Nall52dL(bL1a,ES). The
value of the denominatorNdis is well known @28# in the
absence of step-edge barriers, being of orderL in d51 and
of order L2/lnL in d52, and it is trivial in the limit of
infinite barriers, being exactly equal toLd. Hence ind51
we obtainN;(L1a,ES), for all ,ES.

In d52 we have the limiting expressionsN; lnL for
weak barriers andN;,ES/L for strong ones. For intermedi
ate barriers it is possible to find a simple approximate
pression forNdis and therefore an interpolation between t
two limits. The atom performs on average a numberNtr
5t res /t tr of traversals of the island. During a single tr
versal each site has a probabilityp1;(1/lnL) to be visited.
After all Ntr traversals the probabilityps that a generic site
has been visited at least once is given by 12ps5(1
2p1)Ntr. Hence we can estimate the number of distinct v
ited sites as

Ndis5L2ps5L2@12~12p1!tres /t tr#. ~30!

FIG. 2. Plot of the correction factorvMF /v and of N
[Nall /Ndis versus,ES/L, for a square terrace of sizeL520.
5-6
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This expression assumes all traversals to be independ
which is clearly not strictly correct. However, it gives th
right values in the limits,ES50 and,ES5` and for inter-
mediate barriers its accuracy can be tested numerically
Fig. 3 we have plotted the ratioNall /Ndis as a function of
,ES, for L520. The picture shows a reasonable agreem
between the analytical estimate and the numerical sim
tion.

B. The spatial distribution

In the preceding section we have shown that MF the
overestimates the nucleation rate by the quantityN because
it counts all meetings between two noninteracting adato
We are now going to prove that the identification of t
mean-field approach as a theory of noninteracting particle
valid for the spatial distribution of nucleation events as we
We adopt a continuum notation so that a single proof is s
ficient to demonstrate thatPNI(x) andr2(x) are proportional
in any dimension, for any value of the ES barrier and for a
terrace shape. In the regimes of strong and infinite ES ba
this result is trivial because bothr2(x) andPNI(x) are con-
stant.

We face the problem of determining the quantityPNI(x)
for a pair of adatoms, one with initial distributionp(2)(x,0)
5pU(x) and the other with the effective distributio
p(1)(x,0)5peff(x)5( tp

(2)(x,t)5r(x).
We can consider the coordinates (x1 ,x2) of the two atoms

(x1,2 are vectors in ad-dimensional space! as defining the
positionx5(x1 ,x2) of a single particle in a space of dimen
sionality d852d. This particle moves according to the di
fusion equation] tp5 (D/2) ¹2p. The factor 1

2 appears be-
cause of the different time stepDt employed in describing a
single walker (Dt51/2dD) or two walkers (Dt51/2d8D)
on a terrace.

Integrating in time and definingP(x)5*0
`dtp(x,t) one

finds

D

2
¹2P~x!52p~x,0!. ~31!

An interchange of the two particles@p(1)(x,0)5pU(x)

FIG. 3. Log-log plot ofNall /Ndis versus,ES for d52 and L
520.
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andp(2)(x,0)5r(x)] is equally legitimate and it is useful to
use a symmetrized form forp(x,0):

p~x,0!5
1

2
@r~x1!pU~x2!1pU~x1!r~x2!#. ~32!

Notice that r(x) is also the solution of the equatio
D¹2r(x)52pU(x). Therefore,

D

2
¹2P~x!5

D

2
@r~x1!¹2

2r~x2!1r~x2!¹1
2r~x1!#, ~33!

where¹ i
2 acts onxi only and¹2[¹1

21¹2
2. Hence,

¹2P~x!5¹2@r~x1!r~x2!#, ~34!

i.e., the functionx(x)5P(x)2r(x1)r(x2) is harmonic. It is
easy to show@29# thatx(x) must be identically zero. Hence

P~x!5r~x1!r~x2!. ~35!

If we set x15x25x, the left-hand side is just the nucle
ation probabilityPNI(x) at pointx between two noninteract
ing adatoms, and the right-hand side is the mean-field p
diction. Notice that we have not used the explicit form
pU(x). Hence, the proof holds forany initial spatial distri-
bution pU(x), so that the equivalence between MF theo
and the noninteracting particles model is true even if ato
are not deposited uniformly.

So far we have rigorously shown that the MF result f
P(n) is not exact. However, one may wonder whether
error introduced by taking into account all meeting eve
following the first one is expected to be large or negligib
We address this issue by evaluating the relative weigh
successive encounters for noninteracting particles.

Let us consider noninteracting particles and definem j as
the fraction of times thej th meeting event actually occurs
Clearlym051 andm j>m j 11. Let us also define thenormal-
izeddistribution for thej th nucleation eventPj

NI(n). Notice
that P1

NI(n)5P(N)(n), the distribution for interacting par
ticles.

The total distribution of nucleation sites is simply

PNI~n!5(
j 51

`

m j Pj
NI~n! , ~36!

and the quantitiesW andWNI are given by

W5m1 , ~37!

WNI5(
n

PNI~n!5(
j 51

`

m j . ~38!

If we now introduce the normalized distribution of a
fictitious nucleations following the first one,
5-7
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P̂NI~n!5

(
j 52

`

m j Pj
NI~n!

(
j 52

`

m j

, ~39!

we can write

PNI~n!5m1P1
NI~n!1(

j 52

`

m j Pj
NI~n!5WP(N)~n!1 P̂NI~n!

3~WNI2W!. ~40!

For weak barriers, ind51, the weightW of the first term is
constant, while the second one diverges asL. As a conse-
quence, for largeL the distributionPNI(n) is dominated by
the contribution of the fictitious successive nucleations.
d52 the first term goes as 1/lnL while the second is con
stant. Again, for largeL, the contribution of first nucleation
events becomes negligible. For strong and infinite barri
W51 while WNI is infinite, so PNI(n) coincides with
P`

NI(n).
In all cases the MF expression for the spatial distribut

of nucleation sites@PNI(n)# is dominated for largeL by the
contribution of the fictitious nucleations following the fir
one.A priori there is no reason for supposing that the dis
bution of thej th nucleation event is equal to the distributio
of the first one, so we expect that the difference between
MF spatial distribution and the exact result persists for
values ofL. This will be checked and confirmed in the fo
lowing paper@21#.

V. CONCLUSIONS

This paper has been devoted to an accurate investiga
of the mean-field approach to the problem of irreversi
nucleation. The main outcome is the proof that MFT
equivalent to a model where particles do not interact and
their meetings are counted as fictitious nucleations.

In the regime of infinite ES barriers, MFT simply brea
down because it predicts a diverging nucleation rate, in c
trast to the correct valuev5FLd. In the other, physically
more interesting, regimes the equivalence of MFT with
model of noninteracting particles implies thatvMF overesti-
mates the correct nucleation rate by the factorN
5Nall /Ndis. This ratio has a clear meaning: a diffusing ad
tom passesN times on a visited site. It depends on sing
particle quantities (Nall ,Ndis) whose expressions are we
known from the theory of random walks.

In Table I we summarize the value of the correction fac
N in regimes~i! and ~ii ! and we report the approximate e
pressions for the nucleation ratev. They are approximate in
the sense that numerical prefactors are neglected, but
scale correctly withL,D,D8,a0. The lattice constanta0 has
been reintroduced in order to give dimensionally corr
espressions. Also, we have made explicit the dependenc
,ES on D andD8, so that only basic quantities appear.

The expressionv;F2L5a0 /D8, valid in two dimensions
for strong step-edge barriers has already been given in
03160
n

s,

n

-

e
ll

on
e

ll

n-

e

-
-

r

ey

t
of

ef.

@19#. It is worth repeating that the nucleation rate in this lim
does not depend on the diffusion constantD so that the
nucleation rate cannot be promoted by using surfactants

Application of MFT is acceptable only in the regime o
vanishing barriers in two dimensions, because in this c
the correction factor@N5 ln(L/a0)# is a small number, for
realistic terrace sizes.

In order to obtain exact expressions forv it is necessary
to have an accurate estimate ofW, or equivalently ofNdis. W
is a function of the terrace sizeL and of the ES length,ES:
for strong barriersW51, while for weak barriersW;1 in
d51 andW;1/lnL in d52. So, for realistic values ofL, W
depends onL and ,ES much more weakly than the othe
quantities appearing inv5FL2dr̄W. However, its depen-
dence is not fully negligible: Figs. 1~a! and 1~b! show that
~in d52) for L520, W varies by a factor 10 by changin
,ES from zero to infinity and for,ES50, W varies by a factor
3 by changing the terrace size fromL54 to L532
(ln32/ln452.5). For comparison, the quantityr̄, which ap-
pears along withW in the expression forv, varies by a
factor 50 by changing,ES/L from 0 to 6 and by a factor 64
by changingL from 4 to 32, for,ES50. The problem of the
exact determination ofW will be tackled again in the follow-
ing paper@21#.

A last comment on rate equations and mean-field appr
mation is in order here. According to the former, the nuc
ation rate is writtenvRE5s1Dr2 and the latter correspond
to takings1 as a constant. In general,s1 is defined through
the relationF15Ds1r, whereF1 is the flux of atoms at-
taching to an adatom. The resulting relationvRE5F1r is
exact, if F1 is evaluated correctly; for example, we can sol
the diffusion equation for a single walker on the terrac
where a second walker is taken as an absorbing sink. S
we have shown that the nucleation rate can be evalu
assuming an atom as immobile, such treatment is essent
correct. In other words, if the capture number is not taken
a constant, the expressionvRE5s1Dr2 may give correct
results, but this method has nothing to do with the us
mean-field approach.

Finally, with regard to the spatial distribution, we hav
provided a very general demonstration of the equivale
between mean field and noninteracting particles. We h

TABLE I. We report the nucleation ratev and the correction
factor N in the two regimes of weak~i! and strong~ii ! step-edge
barriers and in one and two dimensions. The conditions defin
regimes ~i! (t res.t tr) and ~ii ! (t tr!t res!tdep) are written in
terms of the basic quantitiesL,D,D8,a0.

~i! ~ii !

D2D8

D8
!

L

a0

D

D8
@

L

a0
D8@FLd11a0

v N v N
d51 F2L4

D

L

a0

F2L3a0

D8

D

D8
d52 F2L6

D ln(L/a0)

ln(L/a0) F2L5a0

D8

Da0

D8L
5-8
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also shown that the difference betweenP(n) and PNI(n) is
not an effect of the finite size of the terrace and it rema
true for largeL. The full computation of the spatial distribu
tion of nucleation events requires the solution of the dyna
cal problem of two interacting atoms diffusing on a terra
This problem will be solved analytically and/or numerica
in the following paper@21#.
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APPENDIX A: SINGLE PARTICLE ON A TERRACE

In this appendix we summarize the behavior of a sin
particle on a terrace for all values of the Ehrlich-Schwoe
length,ES.

1. The stationary adatom density

The discrete evolution equation for a particle in a cu
d-dimensional space is

pn~ t11!5
1

2d (
d

pn1d~ t !, ~A1!

wheren1d indicates a neighbor of the siten. If we sum over
t and define the quantityrn5( t50

` pn(t) we obtain

F(
d

rn1d22drnG12dpn~0!50. ~A2!

The terms in square brackets give the discrete Lapla
of rn ; therefore the sumrn5( tpn(t) is simply the solution
of the stationary diffusion equation in the presence of
flux 2dpn(0).

In d51, for constantpn(0), it is possible to find the exac
discrete solution for any value of,ES, once we remark tha
the general solution of the homogeneous equation isrn5c0
1c1n and a particular solution of the nonhomogeneo
equation isrn52c2n2 @the factorc2 depending on the con
stant term in Eq.~A2!#.

Boundary conditions arer05ar1 andrL115arL , where
a5,ES/(11,ES) goes from 0 to 1 as the Ehrlich-Schwoeb
length,ES varies from 0 tò .

The explicit expression ofrn is

rn5
1

L
@,ESL1~L11!n2n2#. ~A3!

Its normalized version is

pn
S[

rn

(
n

rn

5
1

,ESL
21

L~L11!~L12!

6

3@,ESL1~L11!n2n2#. ~A4!
03160
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In a continuum formalism, the equation isD]x
2r1F50 and

the solution ind51 is

r~x!5
F

2D
@,ESL1Lx2x2#. ~A5!

In d52 the solution of the continuum equation is as ea
as in d51 if we specialize to a circular terrace. IfL now
denotes the radius, the solution for generic,ES is

r~r !5
F

4D
@L212L,ES2r 2#. ~A6!

We finally evaluate the average densityr̄ on the terrace

r̄5
F

12D
L~L16,ES! d51, ~A7!

r̄5
F

8D
L~L14,ES! d52 @circular terrace#. ~A8!

2. The dynamical problem in one dimension

We now summarize the dynamical behavior of a sin
particle on a one-dimensional terrace. The two-dimensio
case is treated in the following section.

The discrete evolution equation for the particle is

pn~ t11!5 1
2 @pn11~ t !1pn21~ t !#, ~A9!

with the usual boundary conditionsp0(t)5ap1(t) and
pL11(t)5apL(t). The solution is found by separating th
space and time variables,pn(t)5X(n)F(t),

F~ t11!

F~ t !
5l5

X~n11!1X~n21!

2X~n!
, 0,l,1.

~A10!

The temporal part isF(t)5l tF(0). Thespatial part has the
general form

X~n!5Asin~nf!1Bcos~nf!, ~A11!

which givesl5cosf. The boundary conditions determin
the values ofA, B, andf.

In particular, by imposing the boundary condition inn
50 one obtainsB5bA with b5asinf/(12acosf). Using
this relation and imposing the other boundary condition
n5L11 one obtains

tan~Lf!5
~a221!sinf

~11a2!cosf22a
. ~A12!

This equation hasL solutions that we label asfk with k
51, . . . ,L. Then the general solution is

pn~ t !5 (
k51

L

cost~fk!Xk~n!, ~A13!

with
5-9
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Xk~n!5Aksin~fkn!1Bkcos~fkn!. ~A14!

Givenpn(t) one can computeS(t), the probability that an
adatom is still on the terrace at timet after deposition~sur-
vival probability!,

S~ t ![ (
n51

L

pn~ t !. ~A15!

Another important quantity is the residence time, defined

t res[(
t51

`

t@S~ t21!2S~ t !# ~A16!

becauseS(t21)2S(t) is the probability that the particle
stays on the terrace exactly a timet. It is easy to check tha

t res5(
t50

`

S~ t !5 (
n51

L F(
t50

`

pn~ t !G5 (
n51

L

rn . ~A17!

Recalling Appendix A1, for the initial distributionpn(0)
5pn

U51/L we have, for any value of the ES barrier,

t res5
~L11!~L12!

6
1,ESL. ~A18!

In order to pass to a continuous time we have to multi
it by Dt51/2D. For largeL, t res5L/D(L/121,ES/2). This
result agrees with the relationr̄5Ft res @see Eq.~A7!#.

Unfortunately it is not possible to solve explicitly Eq
~A12! for generic values ofa: we now discuss the two limi
cases where an explicit solution is possible.

a. Zero barriers

For ,ES50 (a50), the allowed values offk are

fk5
kp

L11
~k51, . . . ,L ! ~A19!

and the general solution is

pn~ t !5 (
k51

L

AkcostS kp

L11D sinS nkp

L11D ~A20!

with

Ak5
2

L11 (
n51

L

pn~0!sinS nkp

L11D . ~A21!

In particular, two forms ofpn(0) are most interesting to
us. For a uniform distributionpn(0)5pn

U51/L the coeffi-
cients are

Ak[Ak
U5

2

L~L11!
sinS L

2

kp

L11D sinS kp

2 D cosecS 1

2

kp

L11D .

~A22!

For the distribution pn(0)5pn
S56/ @L(L11)(L12)#n(L

112n) @see Eq.~A4!#, the explicit solution is
03160
s

y

Ak[Ak
S5

6

L~L11!2~L12!

sinS kp

2 D
sin3F kp

2~L11!G
sinF Lkp

2~L11!G .
~A23!

As shown in Appendix A1,pn
S is the normalized version

of rn5(t50
` pn(t) wherepn(t) is the solution of the diffu-

sion equation with uniform initial conditionpn
U . Writing ex-

plicitly the sum we obtain

(
t50

`

pn~t!5 (
t50

`

(
k51

L

Ak
UcostS kp

L11D sinS nkp

L11D
~A24!

5 (
k51

L Ak
U

12cosS kp

L11D sinS nkp

L11D . ~A25!

Hence

Ak
S}

Ak
U

12cosS kp

L11D 5
Ak

U

2 sin2F kp

2~L11!G
, ~A26!

as can be easily verified by comparing Eq.~A22! with Eq.
~A23!.

If we sum pn(t) over n @see Eq.~A20!# we obtain the
survival probability

S~ t !5 (
k51

L

Ak costS kp

L11D sinS L

2

kp

L11D sinS kp

2 D
3cosecS 1

2

kp

L11D . ~A27!

The distributionpn(t) is in general a sum of exponentia
decays

pn~ t !5 (
k51

L

Ak sinS nkp

L11DexpF t ln cosS kp

L11D G .
~A28!

It can be considered as a single exponential when the se
slowest decaying exponential is negligible. ForL@1 this
means

expF2S 2p

L D 2 t

2G!1 ⇒ t@
L2

2p2 .t tr . ~A29!

Hence, fort@t tr ,

pn~ t !.A1 sinS np

L11DexpF2S p

L D 2 t

2G
.A1 sinS np

L11DexpS 2
t

t res
D . ~A30!
5-10
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For the same reason, fort@t tr ,

S~ t !.A1

2~L11!

p
expS 2

t

t res
D . ~A31!

b. Infinite barriers

For ,ES5` (a51) the allowed values offk are

fk5
kp

L
~k50, . . . ,L21! ~A32!

andAk5Bk tan(kp/2L), so that the general solution is

pn~ t !5 (
k50

L21

Ak costS kp

L DXk~n!, ~A33!

where

Xk~n!5F tanS kp

2L D sinS nkp

L D1cosS nkp

L D G . ~A34!

The coefficients Ak depend on the initial condition
through the relation

Ak5
1

Nk
(
n51

L

pn~0!Xk~n!, ~A35!

where (dk0 is the Kronecker symbol!

Nk5
L

2 F11tan2S kp

2L D G~11dk0!. ~A36!

pn(t) is the sum of a constant~the term fork50) and expo-
nentially decaying terms (k.0). For pn(0)51/L, the only
nonvanishing coefficient isA051/L and this implies for all
times

pn~ t !5
1

L
. ~A37!

In the general case of nonconstantpn(0), theexponential
decays are negligible when exp@2(p/L)2t/2#!1, that is to
say t@(2/p2)L2.t tr .

c. Strong barriers

Let us consider now the case of finite but large,ES (,ES
@L). The solution of Eq.~A12!, with a→1 and large but
fixed L, yields, for the two smallestfk ,

f1.A2~12a!

L
5A 2

L,ES
, ~A38!

f25
p

L
1O~12a!. ~A39!

The slowest decays in the general solution are there
exp(2f1

2t/2) and exp(2f2
2t/2). For finite values ofL we can

neglect the second exponential for times such that
03160
re

exp@ t ln cos~f2!#!1 ⇒ t@
2

p2 L2.t tr . ~A40!

Hence for times larger thant tr one can write

pn~ t !5B1 cosS nA 2

L,ES
D costSA 2

L,ES
D

.B1 expS 2
t

L,ES
D , ~A41!

whereB1.1/L and t res5L,ES. This value oft res , multi-
plied by Dt51/2D coincides with its continuum counterpa
r̄/F5L,ES/(2D).

3. The dynamical problem in two dimensions

It is useful to summarize here some results for a sin
particle on a two-dimensional terrace. The general solutio

pm,n~ t !5 (
k, j 51

L

Ak j

1

2t FcosS kp

L11D
1cosS j p

L11D G t

Xk~m!Xj~n!, ~A42!

where the coefficientsAk j are

Ak j5
1

NkNj
(

m,n51

L

pm,n~0!Xk~m!Xj~n!. ~A43!

For zero barriersXk(n)5sin@nkp/(L11)# and Nk5(L
11)/2. For a uniformly distributed adatom,pm,n

U 51/L2 and
the coefficients are

Ak j
U 5Ak

UAj
U5F 2

L~L11!G
2

sinS kp

2 D sinS j p

2 D sinF Lkp

2~L11!G
3sinF L j p

2~L11!G cscF kp

2~L11!G cscF j p

2~L11!G . ~A44!

We indicate aspm,n
S the normalized solution of the station

ary diffusion equation in the presence of a constant fl
Differently from what occurs in the one-dimensional cas
the explicit form ofpm,n

S is not known exactly for a squar
terrace. However, the expression of its coefficientsAk j

S can
be obtained by exploiting the property~see Appendix A 1!
that pm,n

S 5N(t50
` pm,n(t) where pm,n(t) is the solution of

the diffusion equation with uniform initial conditionpm,n
U

51/L2 andN51/t res is a normalization factor
5-11
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(
t50

`

pm,n~t!5 (
t50

`

(
k, j 51

L

Ak j

1

2t FcosS kp

L11D1cosS j p

L11D G t

sinS mkp

L11D sinS n jp

L11D
5 (

k, j 51

L
Ak j

12
1

2FcosS kp

L11D1cosS j p

L11D G sinS mkp

L11D sinS n jp

L11D . ~A45!
g

e
,
ion

the

we

-

r-

ary
Hence

Ak j
S 5N

Ak j
U

12
1

2 FcosS kp

L11D1cosS j p

L11D G . ~A46!

The numerical prefactorN can be determined by imposin
that the sum overm andn of pm,n

S is 1, that is

(
m,n

(
k, j

Ak j
S sinS mkp

L11D sinS n jp

L11D51, ~A47!

which implies

1

N
5FL~L11!

2 G2

(
k, j

~Ak j
U !2

12
1

2 FcosS kp

L11D1cosS j p

L11D G .

~A48!

In the limit of largeL,

t res5
1

N
.FL~L11!

2 G2 ~A11
U !2

12cosS p

L11D .
27

p6 L2.

~A49!

Hence in the continuumt res.(32/p6)L2/D and

b.
32

p6 . ~A50!

In the limit of strong but finite barriers one findst res
5L,ES/(4D), so thata51/4.

APPENDIX B: THE EFFECTIVE DISTRIBUTION

We want to evaluate the effective distribution

pn
eff[(

t50

`

Pdep~t!pn~t! ~B1!

introduced in Sec. III A. Sincepn(t) decays to zero after a
time of order t res , for regimes ~i! and ~ii ! ~where t res
!tdep) Pdep(t) can be taken as a constant. Hence

pn
eff5

1

tdep
(
t50

`

pn~t! @~i! and~ii !#. ~B2!
03160
The sum(tpn(t) has been shown in Appendix A1 to b
equal to the solutionrn of the stationary diffusion equation
which always has a parabolic shape. Its normalized vers
pn

S is

pn
S5

rn

(
n51

L

rn

5
rn

t res
, ~B3!

so that

pn
eff5

t res

tdep
pn

S @~i! and~ii !#. ~B4!

This equation corresponds to Eq.~14! in the limit t res
!tdep.

For strong and infinite barriers@regimes~ii ! and~iii !#, the
contribution of times shorter thant tr is smaller thant tr /tdep
and therefore negligible. Accordingly, we can evaluate
sum ~B1! using the expression forpn(t) that is valid in the
limit t@t tr @see Eq.~A41!, in d52 the generalization is
trivial#, pn(t)5(1/Ld)exp(2t/tres) and obtain

pn
eff5

1

Ldtdep
(
t50

`

expF2tS 1

tdep
1

1

t res
D G . ~B5!

Converting the sum over discrete times into an integral,
have

pn
eff5

t res

t res1tdep

1

Ld 5
t res

t res1tdep
pn

S , ~B6!

where—as usual—pn
S is the normalized solution of the sta

tionary diffusion equation. Thus, formula~14!,

pn
eff5

t res

t res1tdep
pn

S ~B7!

can be used in all the different regimes.
In the continuum it is possible to work out a more rigo

ous approach and determinepn
eff as the solution of a differ-

ential equation, which is the generalization of the station
diffusion equation~3!. We start with the diffusion equation
for p(x,t), ] tp5D¹2p, wherex is a d-dimensional vector.
If we multiply both sides byPdep(t) and integrate in time, we
obtain
5-12
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E
0

`

dtPdep~ t !] tp~x,t !5D¹2E
0

`

dtPdep~ t !p~x,t !. ~B8!

The right-hand side is justD¹2peff(x) while the left-hand
side is

E
0

`

dtPdep~ t !] tp~x,t !5Pdep~ t !p~x,t !u0
`

2E
0

`

dt@] tPdep~ t !#p~x,t !

52
1

tdep

1

A 1
1

tdep
E

0

`

dtPdep~ t !p~x,t !

~B9!

and Eq.~B8! becomes

D¹2peff~x!2
1

tdep
peff~x!1F50. ~B10!

It differs from the stationary diffusion equationD¹2r
1F50 because of the presence of a ‘‘desorption’’ term
@2peff(x)/tdep# that is the responsible of the saturation
peff(x) at large,ES. As a matter of fact, in the limit,ES
→`, r is known to diverge as (F/D)L,ES @see Eqs.~A7!
and ~A8!# while the above equation clearly shows th
peff(x) goes to the constantFtdep51/A.

The exact solution of Eq.~B10! can be found both ind
51 and in d52 for a circular terrace and the proof th
peff(x)5t res /(t res1tdep)pS(x) works much in the same
way in the two cases. We give here some more details for
bidimensional case. The solution of Eq.~B10! with the usual
boundary condition] rp

eff(r )52peff(r )/,ES evaluated forr
5L ~the radius of the circular terrace! is

peff~r !5
1

pL2F 12

I 0S r

ADtdep
D

I 0S L

ADtdep
D 1

,ES

ADtdep

I 1S L

ADtdep
D G ,

~B11!
-

ice

s.

03160
t

e

where I 0 and I 1 are the modified Bessel functions of ord
zero and one, respectively. The arguments of the Bessel f
tions are at most equal toL/ADtdep5A8t tr /tdep, a small
quantity. An expansion of the Bessel functions gives

peff~r !5
1

pL2

L212,ESL2r 2

4Dtdep1L~L12,ES!
. ~B12!

By using the results~A6! and ~A8!, after some algebra we
obtain the final expression

peff~r !5
t res

tdep1
L

D S L

4
1

,ES

2 D pS~r !, d52. ~B13!

The calculation ind51 leads to the result

peff~x!5
t res

tdep1
L

D S L

8
1

,ES

2 D pS~x!, d51. ~B14!

The quantityL/D(•••) appearing on the right-hand sid
in the denominator does not coincide witht res because the
term L2/D has a prefactor14 instead that18 in d52 and a
prefactor1

8 instead that1
12 in d51. Nonetheless such quan

tity differs from t res for a quantity of ordert tr which can be
safely neglected with respect totdep ~always appearing in
the denominator! so that, in the limitt tr!tdep ~a limit ap-
plied throughout the paper! we can conclude that the relatio

peff~x!5
t res

tdep1t res
pS~x! ~B15!

is always valid.
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